Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter

Abstract

Therapeutic gene expression in glial cells has been tested for the treatment of neurological diseases in animal models. Many of such studies used the promoter of the glial fibrillary acidic protein (GFAP) to restrict gene expression to astrocytes. We have investigated in the current study whether it is possible to improve the transcriptional activity of the cellular promoter, while maintaining its cell-type specificity. We constructed an expression cassette containing a hybrid cytomegalovirus (CMV) enhancer/GFAP promoter and placed it into baculovirus vectors, a type of viral vectors capable of transducing astrocytes. In another vector design, we used inverted terminal repeats (ITRs) from adeno-associated virus (AAV) to flank the expression cassette. The recombinant baculoviruses with the hybrid promoter improved gene expression levels over two orders of magnitude in glial cell lines and by 10-fold in the rat brain when compared to the baculoviruses with the GFAP promoter alone. The expression was further improved by ITR flanking, reaching levels higher than that mediated by the baculovirus vectors with the CMV immediate-early enhancer/promoter (CMV promoter). Using these recombinant baculoviruses, we observed extended in vivo transgene expression in the rat brain at 90 days postinjection, by which time the gene expression from baculovirus vectors with the GFAP or CMV promoter had already become undetectable. The astrocyte specificity of the GFAP promoter was preserved in the engineered expression cassette with the CMV enhancer and the AAV ITRs, as demonstrated by immunohistological analysis of brain samples and an axonal retrograde transport assay. Taken together, our findings suggest that these baculovirus vectors may serve as useful tools for astrocyte-specific gene expression in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bohn MC . Motoneurons crave glial cell line-derived neurotrophic factor. Exp Neurol 2004; 190: 263–275.

    Article  CAS  PubMed  Google Scholar 

  2. Do Thi NA, Saillour P, Ferrero L, Dedieu JF, Mallet J, Paunio T . Delivery of GDNF by an E1,E3/E4 deleted adenoviral vector and driven by a GFAP promoter prevents dopaminergic neuron degeneration in a rat model of Parkinson's disease. Gene Therapy 2004; 11: 746–756.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A . Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 2004; 190: 356–372.

    Article  CAS  PubMed  Google Scholar 

  4. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M . Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 1995; 92: 10099–10103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyce FM, Bucher NLR . Baculovirus mediated gene transfer into mammalian cells. Proc Natl Acad Sci USA 1996; 93: 2348–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L et al. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci USA 2000; 97: 14638–14643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE . Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 2002; 6: 5–11.

    Article  CAS  PubMed  Google Scholar 

  8. Kost TA, Condreay JP . Recombinant baculoviruses as mammalian cell gene delivery vectors. Trends Biotechnol 2002; 20: 173–180.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wang X, Guo H, Wang S . Axonal transport of recombinant baculovirus vectors. Mol Ther 2004; 10: 1121–1129.

    Article  CAS  PubMed  Google Scholar 

  10. Lehtolainen P, Tyynela K, Kannasto J, Airenne KJ, Yla-Herttuala S . Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Therapy 2002; 9: 1693–1699.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Yang Y, Wang S . Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp Physiol 2005; 90: 39–44.

    Article  CAS  PubMed  Google Scholar 

  12. Su M, Hu H, Lee Y, d'Azzo A, Messing A, Brenner M . Expression specificity of GFAP transgenes. Neurochem Res 2004; 29: 2075–2093.

    Article  CAS  PubMed  Google Scholar 

  13. Dressel U, Renkawitz R, Baniahmad A . Promoter specific sensitivity to inhibition of histone deacetylases: implications for hormonal gene control, cellular differentiation and cancer. Anticancer Res 2000; 20: 1017–1022.

    CAS  PubMed  Google Scholar 

  14. Biglari A, Bataille D, Naumann U, Weller M, Zirger J, Castro MG et al. Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Ther 2004; 11: 721–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morelli AE, Larregina AT, Smith-Arica J, Dewey RA, Southgate TD, Ambar B et al. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. J Gen Virol 1999; 80: 571–583.

    Article  CAS  PubMed  Google Scholar 

  16. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  17. Liu BH, Wang X, Ma YX, Wang S . CMV enhancer/human PDGF-beta promoter for neuron-specific transgene expression. Gene Therapy 2004; 11: 52–60.

    Article  PubMed  Google Scholar 

  18. Wang CY, Guo HY, Lim TM, YK Ng YK, Neo HP, Hwang PYK et al. Improved neuronal transgene expression from an AAV-2 vector with a hybrid CMV enhancer/PDGF-β promoter. J Gene Med 2005; 7: 945–955.

    Article  CAS  PubMed  Google Scholar 

  19. Philip R, Brunette E, Kilinski L, Murugesh D, McNally MA, Ucar K et al. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNA complexed to cationic liposomes. Mol Cell Biol 1994; 14: 2411–2418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vieweg J, Boczkowski D, Roberson KM, Edwards DW, Philip M, Philip R et al. Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res 1995; 55: 2366–2372.

    CAS  PubMed  Google Scholar 

  21. Johnston KM, Jacoby D, Pechan PA, Fraefel C, Borghesani P, Schuback D et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 1997; 8: 359–370.

    Article  CAS  PubMed  Google Scholar 

  22. Costantini LC, Jacoby DR, Wang S, Fraefel C, Breakefield XO, Isacson O . Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999; 10: 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  23. Lam P, Hui KM, Wang Y, Allen PD, Louis DN, Yuan CJ et al. Dynamics of transgene expression in human glioblastoma cells mediated by herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 2002; 13: 2147–2159.

    Article  CAS  PubMed  Google Scholar 

  24. Xin KQ, Ooki T, Jounai N, Mizukami H, Hamajima K, Kojima Y et al. A DNA vaccine containing inverted terminal repeats from adeno-associated virus increases immunity to HIV. J Gene Med 2003; 5: 438–445.

    Article  CAS  PubMed  Google Scholar 

  25. Chikhlikar P, Barros de Arruda L, Agrawal S, Byrne B, Guggino W, August JT et al. Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8(+) responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology 2004; 323: 220–232.

    Article  CAS  PubMed  Google Scholar 

  26. Fu Y, Wang Y, Evans SM . Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nat Biotechnol 1998; 16: 253–257.

    Article  CAS  PubMed  Google Scholar 

  27. Chou CY, Horng LS, Tsai HJ . Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res 2001; 10: 303–315.

    Article  CAS  PubMed  Google Scholar 

  28. Hsiao CD, Hsieh FJ, Tsai HJ . Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 2001; 220: 323–336.

    Article  CAS  PubMed  Google Scholar 

  29. Jakobsson J, Ericson C, Jansson M, Bjork E, Lundberg C . Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 2003; 73: 876–885.

    Article  CAS  PubMed  Google Scholar 

  30. Ralph GS, Bienemann A, Harding TC, Hopton M, Henley J, Uney JB . Targeting of tetracycline-regulatable transgene expression specifically to neuronal and glial cell populations using adenoviral vectors. NeuroReport 2000; 11: 2051–2055.

    Article  CAS  PubMed  Google Scholar 

  31. McKie EA, Graham DI, Brown SM . Selective astrocytic transgene expression in vitro and in vivo from the GFAP promoter in a HSV RL1 null mutant vector – potential glioblastoma targeting. Gene Therapy 1998; 5: 440–450.

    Article  CAS  PubMed  Google Scholar 

  32. Jakobsson J, Georgievska B, Ericson C, Lundberg C . Lesion-dependent regulation of transgene expression in the rat brain using a human glial fibrillary acidic protein-lentiviral vector. Eur J Neurosci 2004; 19: 761–765.

    Article  PubMed  Google Scholar 

  33. Peel AL, Klein RL . Adeno-associated virus vectors: activity and applications in the CNS. J Neurosci Methods 2000; 98: 95–104.

    Article  CAS  PubMed  Google Scholar 

  34. Xu R, Janson CG, Mastakov M, Lawlor P, Young D, Mouravlev A et al. Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Therapy 2001; 8: 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  35. Flotte TR, Afione SA, Solow R, Drumm ML, Markakis D, Guggino WB et al. Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem 1993; 268: 3781–3790.

    CAS  PubMed  Google Scholar 

  36. Fitzsimons HL, Bland RJ, During MJ . Promoters and regulatory elements that improve adeno-associated virus transgene expression in the brain. Methods 2002; 28: 227–236.

    Article  CAS  PubMed  Google Scholar 

  37. Yu D, Chen D, Chiu C, Razmazma B, Chow YH, Pang S . Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther 2001; 8: 628–635.

    Article  CAS  PubMed  Google Scholar 

  38. Roemer K, Johnson PA, Friedmann T . Transduction of foreign regulatory sequences by a replication-defective herpes simplex virus type 1: the rat neuron-specific enolase promoter. Virus Res 1995; 35: 81–89.

    Article  CAS  PubMed  Google Scholar 

  39. Paulus W, Baur I, Boyce FM, Breakefield XO, Reeves SA . Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J Virol 1996; 70: 62–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller N, Whelan J . Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum Gene Ther 1997; 8: 803–815.

    Article  CAS  PubMed  Google Scholar 

  41. Carbonell LF, Klowden MJ, Miller LK . Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J Virol 1985; 56: 153–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanbridge LJ, Dussupt V, Maitland NJ . Baculoviruses as vectors for gene therapy against human prostate cancer. J Biomed Biotechnol 2003; 2003: 79–91.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smith JD, Sikes J, Levin JA . Human apolipoprotein E allele-specific brain expressing transgenic mice. Neurobiol Aging 1998; 19: 407–413.

    Article  CAS  PubMed  Google Scholar 

  44. Barnhart KM, Hartikka J, Manthorpe M, Norman J, Hobart P . Enhancer and promoter chimeras in plasmids designed for intramuscular injection: a comparative in vivo and in vitro study. Hum Gene Ther 1998; 9: 2545–2553.

    Article  CAS  PubMed  Google Scholar 

  45. Hagstrom JN, Couto LB, Scallan C, Burton M, McCleland ML, Fields PA et al. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 2000; 95: 2536–2542.

    CAS  PubMed  Google Scholar 

  46. Xu LF, Daly T, Gao CH, Flotte TR, Song SH, Byrne BJ et al. CMV-β-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1α promoter and results in therapeutic levels of human factor X in mice. Hum Gene Ther 2001; 12: 563–573.

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi M, Tanaka A, Hayashi Y, Shimamura S . The CMV enhancer stimulates expression of foreign genes from the human EF-1 alpha promoter. Anal Biochem 1997; 247: 179–181.

    Article  CAS  PubMed  Google Scholar 

  48. Yew NS, Przybylska M, Ziegler RJ, Liu D, Cheng SH . High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther 2001; 4: 75–82.

    Article  CAS  PubMed  Google Scholar 

  49. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM . Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6: 395–404.

    Article  CAS  PubMed  Google Scholar 

  50. McCarty DM, Young Jr SM, Samulski RJ . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819–845.

    Article  CAS  PubMed  Google Scholar 

  51. Xiao X, Xiao W, Li J, Samulski RJ . A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J Virol 1997; 71: 941–948.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang CC, Xiao X, Zhu X, Ansardi DC, Epstein ND, Frey MR et al. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 1997; 71: 9231–9247.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Philpott NJ, Gomos J, Berns KI, Falck-Pedersen E . A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci USA 2002; 99: 12381–12385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998; 72: 8568–8577.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang J, Zhou W, Zhang Y, Zidon T, Ritchie T, Engelhardt JF . Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 1999; 73: 9468–9477.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Jerome Boulaire and Dr Frank Alexis for their critical review of the manuscript and other lab members for helpful discussion and support. The work was supported by Institute of Bioengineering and Nanotechnology, the Agency for Science, Technology and Research (A*STAR) in Singapore and National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther 13, 1447–1456 (2006). https://doi.org/10.1038/sj.gt.3302771

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302771

Keywords

This article is cited by

Search

Quick links