Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy

Abstract

Impairment of cardiac function in ischemic cardiomyopathy has been postulated to be due to the decrease in blood flow and increase in collagen synthesis. Therefore, an approach to alter them directly by means of a growth factor may open up a new therapeutic concept in ischemic cardiomyopathy. From this viewpoint, hepatocyte growth factor (HGF) is a unique growth factor with angiogenic and antifibrotic effects. Thus, we examined the feasibility of gene therapy using HGF plasmid DNA for ischemic cardiomyopathy. Human HGF plasmid DNA at a dose of 0.4 or 4 mg was injected into ischemic myocardium of pigs induced by ameroid constrictor with the NOGA system. At 1 month after injection, the ischemic area was significantly reduced in the HGF group, accompanied by a significant increase in capillary density and regional myocardial perfusion in the ischemic area (P<0.01). In contrast, a significant decrease in fibrotic area was observed in the HGF group, associated with a significant decrease in collagen I, III and TGF-β synthesis as compared to the control group (P<0.01). Consistently, cardiac function was significantly improved in the 4 mg HGF group as compared to the control group (P<0.05). Overall, the present in vivo experiments demonstrated that intramyocardial injection of human HGF plasmid DNA in ischemic cardiomyopathy resulted in a significant improvement in cardiac function through an increase in blood flow and decrease in fibrosis. These favorable outcomes suggest potential utility to treat patients with ischemic heart disease using HGF gene transfer. Currently, a phase I study using human HGF plasmid DNA is ongoing to test the validity of this concept.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93: 662–670.

    Article  CAS  Google Scholar 

  2. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257: 1401–1403.

    Article  CAS  Google Scholar 

  3. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 2012–2018.

    Article  CAS  Google Scholar 

  4. Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000; 102: 965–974.

    Article  CAS  Google Scholar 

  5. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105: 1291–1297.

    Article  CAS  Google Scholar 

  6. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 2002; 105: 788–793.

    Article  CAS  Google Scholar 

  7. Kastrup J, Jorgensen E, Ruck A, Tagil K, Glogar D, Ruzyllo W et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol 2005; 45: 982–988.

    Article  CAS  Google Scholar 

  8. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994; 89: 2273–2282.

    Article  CAS  Google Scholar 

  9. Volders PG, Willems IE, Cleutjens JP, Arends JW, Havenith MG, Daemen MJ . Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 1993; 25: 1317–1323.

    Article  CAS  Google Scholar 

  10. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 1999; 33: 1379–1384.

    Article  CAS  Google Scholar 

  11. Hayashi S, Morishita R, Nakamura S, Yamamoto K, Moriguchi A, Nagano T et al. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: downregulation of HGF in response to hypoxia in vascular cells. Circulation 1999; 100: II301–II308.

    Article  CAS  Google Scholar 

  12. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets. Gene Therapy 2000; 7: 417–427.

    Article  CAS  Google Scholar 

  13. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Therapy 2001; 8: 181–189.

    Article  CAS  Google Scholar 

  14. Taniyama Y, Morishita R, Hiraoka K, Aoki M, Nakagami H, Yamasaki K et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation 2001; 104: 2344–2350.

    Article  CAS  Google Scholar 

  15. Morishita R, Sakaki M, Yamamoto K, Iguchi S, Aoki M, Yamasaki K et al. Impairment of collateral formation in lipoprotein(a) transgenic mice: therapeutic angiogenesis induced by human hepatocyte growth factor gene. Circulation 2002; 105: 1491–1496.

    Article  CAS  Google Scholar 

  16. Nakamura Y, Morishita R, Higaki J, Kida I, Aoki M, Moriguchi A et al. Hepatocyte growth factor is a novel member of the endothelium-specific growth factors: additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor. J Hypertens 1996; 14: 1067–1072.

    Article  CAS  Google Scholar 

  17. Matsuda Y, Matsumoto K, Ichida T, Nakamura T . Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats. J Biochem (Tokyo) 1995; 118: 643–649.

    Article  CAS  Google Scholar 

  18. Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med 1999; 5: 226–230.

    Article  CAS  Google Scholar 

  19. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T . Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101: 1827–1834.

    Article  CAS  Google Scholar 

  20. Mizuno S, Matsumoto K, Li MY, Nakamura T . HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J 2005; 19: 580–582.

    Article  Google Scholar 

  21. Taniyama Y, Morishita R, Nakagami H, Moriguchi A, Sakonjo H, Kim-Mitsuyama S et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation 2000; 102: 246–252.

    Article  CAS  Google Scholar 

  22. Taniyama Y, Morishita R, Aoki M, Hiraoka K, Yamasaki K, Hashiya N et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension 2002; 40: 47–53.

    Article  CAS  Google Scholar 

  23. Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM . Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 1993; 68: 18–25.

    CAS  PubMed  Google Scholar 

  24. Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 1999; 10: 2953–2960.

    Article  CAS  Google Scholar 

  25. Sylven C, Sarkar N, Insulander P, Kenneback G, Blomberg P, Islam K et al. Catheter-based transendocardial myocardial gene transfer. J Interv Cardiol 2002; 15: 7–13.

    Article  Google Scholar 

  26. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114–1123.

    Article  CAS  Google Scholar 

  27. Li Y, Takemura G, Kosai K, Yuge K, Nagano S, Esaki M et al. Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation 2003; 107: 2499–2506.

    Article  CAS  Google Scholar 

  28. Morishita R, Aoki M, Hashiya N, Makino H, Yamasaki K, Azuma J et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 2004; 44: 203–209.

    Article  CAS  Google Scholar 

  29. Dorafshar AH, Angle N, Bryer-Ash M, Huang D, Farooq MM, Gelabert HA et al. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J Surg Res 2003; 114: 179–186.

    Article  CAS  Google Scholar 

  30. Yang J, Dai C, Liu Y . Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 2003; 163: 621–632.

    Article  CAS  Google Scholar 

  31. Kobayashi E, Sasamura H, Mifune M, Shimizu-Hirota R, Kuroda M, Hayashi M et al. Hepatocyte growth factor regulates proteoglycan synthesis in interstitial fibroblasts. Kidney Int 2003; 64: 1179–1188.

    Article  CAS  Google Scholar 

  32. Kawamoto A, Murayama T, Kusano K, Ii M, Tkebuchava T, Shintani S et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 2004; 110: 1398–1405.

    Article  CAS  Google Scholar 

  33. Taniyama Y, Walsh K . Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol 2002; 34: 1241–1247.

    Article  CAS  Google Scholar 

  34. Smits PC, van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 2003; 42: 2063–2069.

    Article  Google Scholar 

  35. Rentrop KP, Cohen M, Blanke H, Phillips RA . Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 1985; 5: 587–592.

    Article  CAS  Google Scholar 

  36. Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, Silvennoinen P, Kivela A et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation 2004; 109: 1029–1035.

    Article  CAS  Google Scholar 

  37. Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G et al. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 2005; 38: 375–385.

    Article  CAS  Google Scholar 

  38. Griffin KL, Woodman CR, Price EM, Laughlin MH, Parker JL . Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation 2001; 104: 1393–1398.

    Article  CAS  Google Scholar 

  39. Ceol M, Forino M, Gambaro G, Sauer U, Schleicher ED, D'Angelo A et al. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization. J Clin Lab Anal 2001; 15: 215–222.

    Article  CAS  Google Scholar 

  40. Wang JF, Olson ME, Reno CR, Kulyk W, Wright JB, Hart DA . Molecular and cell biology of skin wound healing in a pig model. Connect Tissue Res 2000; 41: 195–211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid from the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), the Organization for Pharmaceutical Safety and Research, a Grant-in-Aid from The Ministry of Public Health and Welfare, a Grant-in-Aid from Japan Promotion of Science, and through Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology, the Japanese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Morishita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azuma, J., Taniyama, Y., Takeya, Y. et al. Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy. Gene Ther 13, 1206–1213 (2006). https://doi.org/10.1038/sj.gt.3302740

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302740

Keywords

This article is cited by

Search

Quick links