Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A combination of DNA vaccines targeting human papillomavirus type 16 E6 and E7 generates potent antitumor effects

Abstract

Human papillomavirus (HPV) infects large numbers of women worldwide and is present in more than 99% of all cervical cancers. HPV E6 and E7 are two viral oncoproteins that are consistently expressed in HPV infections and HPV-associated malignancies. We have previously developed DNA vaccines encoding calreticulin (CRT) linked either to HPV type 16 (HPV-16) E6 or to HPV-16 E7, both of which generated significant antitumor effects against E6- and E7-expressing tumors. In this study, we demonstrate that simultaneous vaccination of C57BL/6 mice or HLA-A2 transgenic mice with both CRT/E6 and CRT/E7 DNA vaccines generates significant E6- and E7-specific T-cell immune responses in vaccinated mice. Furthermore, combined vaccination with both CRT/E6 and CRT/E7 DNA generates significantly better therapeutic antitumor effects against HPV E6- and E7-expressing tumors than vaccination with either CRT/E6 DNA or CRT/E7 DNA alone. Our data suggest that it may be desirable to combine DNA vaccines targeting E6 with DNA vaccines targeting E7 to develop effective immunotherapeutic strategies for control of HPV infection and HPV-associated lesions in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo Jr LD . DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  2. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN . Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001; 108: 669–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60: 1035–1042.

    CAS  PubMed  Google Scholar 

  5. Hung C-F, Cheng W-F, Hsu K-F, Chai C-Y, He L, Ling M et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Research 2001; 61: 3698–3703.

    CAS  PubMed  Google Scholar 

  6. Wu T-C, Guarnieri FG, Staveley-O'Carroll KF, Viscidi RP, Levitsky HI, Hedrick L et al. Engineering an intracellular pathway for MHC class II presentation of HPV-16 E7. Proc Natl Acad Sci 1995; 92: 11671–11675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JW, Hung CF, Juang J, He L, Kim TW, Armstrong DK et al. Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Therapy 2004; 11: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  8. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 1995; 87: 796–802.

    Article  CAS  PubMed  Google Scholar 

  9. Peng S, Hung C-F, Trimble C, He L, Yeatermeyer J, Boyd D et al. Development of a DNA vaccine targeting HPV-16 oncogenic protein E6. J Virol 2004; 78: 8468–8476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellenson LH, Wu TC . Focus on endometrial and cervical cancer. Cancer Cell 2004; 5: 533–538.

    Article  CAS  PubMed  Google Scholar 

  11. Ji H, Chang EY, Lin KY, Kurman RJ, Pardoll DM, Wu TC . Antigen-specific immunotherapy for murine lung metastatic tumors expressing human papillomavirus type 16 E7 oncoprotein. Int J Cancer 1998; 78: 41–45.

    Article  CAS  PubMed  Google Scholar 

  12. Wentworth PA, Vitiello A, Sidney J, Keogh E, Chesnut RW, Grey H et al. Differences and similarities in the A2.1-restricted cytotoxic T cell repertoire in humans and human leukocyte antigen-transgenic mice. Eur J Immunol 1996; 26: 97–101.

    Article  CAS  PubMed  Google Scholar 

  13. Peng S, Trimble C, He L, Tsai YC, Lin CT, Boyd DA et al. Characterization of HLA-A2-restricted HPV-16 E7-specific CD8(+) T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice. Gene Therapy; advance online publication, August 18, 2005; doi: 10.1038/sj.gt.3302607.

    Article  Google Scholar 

  14. Cheng WF, Hung CF, Pai SI, Hsu KF, He L, Ling M et al. Repeated DNA vaccinations elicited qualitatively different cytotoxic T lymphocytes and improved protective antitumor effects. J Biomed Sci 2002; 9: 675–687.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao F, Wei Y, Yang L, Zhao X, Tian L, Ding Z et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Therapy 2002; 9: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  16. Eggleton P, Llewellyn DH . Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol 1999; 49: 466–473.

    Article  CAS  PubMed  Google Scholar 

  17. Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20: 7888–7898.

    Article  CAS  PubMed  Google Scholar 

  18. Dalal S, Gao Q, Androphy EJ, Band V . Mutational analysis of human papillomavirus type 16 E6 demonstrates that p53 degradation is necessary for immortalization of mammary epithelial cells. J Virol 1996; 70: 683–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Q, Singh L, Kumar A, Srinivasan S, Wazer DE, Band V . Human papillomavirus type 16 E6-induced degradation of E6TP1 correlates with its ability to immortalize human mammary epithelial cells. J Virol 2001; 75: 4459–4466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L et al. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003; 21: 4036–4042.

    Article  CAS  PubMed  Google Scholar 

  21. Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de JB, Drijfhout JW et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  CAS  PubMed  Google Scholar 

  22. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 1995; 154: 5934–5943.

    CAS  PubMed  Google Scholar 

  23. Lin K-Y, Guarnieri FG, Staveley-O'Carroll KF, Levitsky HI, August T, Pardoll DM et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

  24. Shen Z, Reznikoff G, Dranoff G, Rock KL . Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 1997; 158: 2723–2730.

    CAS  PubMed  Google Scholar 

  25. Kim TW, Hung CF, Boyd DA, He L, Lin CT, Kaiserman D et al. Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res 2004; 64: 400–405.

    Article  CAS  PubMed  Google Scholar 

  26. Newberg MH, Smith DH, Haertel SB, Vining DR, Lacy E, Engelhard VH . Importance of MHC class 1 alpha2 and alpha3 domains in the recognition of self and non-self MHC molecules. J Immunol 1996; 156: 2473–2480.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Drew M Pardoll, Robert J Kurman, and Richard Roden for helpful discussions. We would also like to thank Drs Ralph Hruban and Ken-Yu Lin for critical review of the manuscript. We thank Mr Bruno Macaes for the preparation of the manuscript. This work was supported by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-C Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Tomson, T., Trimble, C. et al. A combination of DNA vaccines targeting human papillomavirus type 16 E6 and E7 generates potent antitumor effects. Gene Ther 13, 257–265 (2006). https://doi.org/10.1038/sj.gt.3302646

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302646

Keywords

This article is cited by

Search

Quick links