Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo

Abstract

Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, EΔNLSM, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.EΔNLSM and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.EΔNLSM and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.EΔNLSM and Ad.MEM in vivo. Induction of Ad.EΔNLSM inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. EΔNLSM and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

4-OH-Tam:

4-OH-tamoxifen

Mer:

mutated hormone-binding domain of murine estrogen receptor

oAdV:

oncolytic adenovirus

HBD:

hormone-binding domain

MOI:

multiplicity of infection

PFU:

plaque-forming units

Dox:

doxycycline

TRE:

tetracycline response element.

References

  1. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  2. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  Google Scholar 

  3. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  Google Scholar 

  4. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT . Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62: 4663–4670.

    CAS  PubMed  Google Scholar 

  5. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  Google Scholar 

  6. Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75: 3314–3324.

    Article  CAS  Google Scholar 

  7. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  Google Scholar 

  8. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  Google Scholar 

  9. Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19: 1035–1041.

    Article  CAS  Google Scholar 

  10. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11: 2009–2024.

    Article  CAS  Google Scholar 

  11. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  12. Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y et al. Target gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys Res Commun 2001; 282: 529–535.

    Article  CAS  Google Scholar 

  13. Peter I, Graf C, Dummer R, Schaffner W, Greber UF, Hemmi S . A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Therapy 2003; 10: 530–539.

    Article  CAS  Google Scholar 

  14. Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res 2003; 63: 1490–1499.

    CAS  PubMed  Google Scholar 

  15. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–4203.

    CAS  PubMed  Google Scholar 

  16. Post DE, Van Meir EG . A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22: 2065–2072.

    Article  CAS  Google Scholar 

  17. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Therapy 2003; 10: 1241–1247.

    Article  CAS  Google Scholar 

  18. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  19. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 2003; 14: 425–433.

    Article  CAS  Google Scholar 

  20. Avvakumov N, Mymryk JS . New tools for the construction of replication-competent adenoviral vectors with altered E1A regulation. J Virol Methods 2002; 103: 41–49.

    Article  CAS  Google Scholar 

  21. Chong H, Ruchatz A, Clackson T, Rivera VM, Vile RG . A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol Ther 2002; 5: 95–203.

    Article  Google Scholar 

  22. Hurtado Picó A, Wang X, Sipo I, Siemetzki U, Eberle J, Poller W et al. Viral and nonviral factors causing nonspecific replication of tumor- and tissue-specific promoter-dependent oncolytic adenoviruses. Mol Ther 2005; 11: 563–577.

    Article  Google Scholar 

  23. Fechner H, Wang X, Srour M, Siemetzki U, Seltmann H, Sutter AP et al. A novel tetracycline-controlled transactivator-transrepressor system enables external control of oncolytic adenovirus replication. Gene Therapy 2003; 10: 1680–1690.

    Article  CAS  Google Scholar 

  24. Hsieh CL, Yang L, Miao L, Yeung F, Kao C, Yang H et al. A novel targeting modality to enhance adenoviral replication by vitamin D3 in androgen-independent human prostate cancer cells and tumors. Cancer Res 2002; 62: 3084–3092.

    CAS  PubMed  Google Scholar 

  25. Picard D, Kumar V, Chambon P, Yamamoto KR . Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul 1990; 1: 291–299.

    Article  CAS  Google Scholar 

  26. Picard D, Salser SJ, Yamamoto KR . A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 1988; 54: 1073–1080.

    Article  CAS  Google Scholar 

  27. Hanstein B, Djahansouzi S, Dall P, Beckmann MW, Bender HG . Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. Eur J Endocrinol 2004; 150: 243–255.

    Article  CAS  Google Scholar 

  28. Pratt WB, Toft DO . Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306–360.

    CAS  PubMed  Google Scholar 

  29. Laios I, Journe F, Laurent G, Nonclercq D, Toillon RA, Seo HS et al. Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens. J Steroid Biochem Mol Biol 2003; 87: 207–221.

    Article  CAS  Google Scholar 

  30. Spitkovsky D, Steiner P, Lukas J, Lees E, Pagano M, Schulze A et al. Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation. J Virol 1994; 68: 2206–2214.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hope TJ, Huang XJ, McDonald D, Parslow TG . Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 1990; 87: 7787–7791.

    Article  CAS  Google Scholar 

  32. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  33. Burk O, Klempnauer KH . Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein. EMBO J 1991; 10: 3713–3719.

    Article  CAS  Google Scholar 

  34. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG . Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 1993; 7: 232–240.

    CAS  PubMed  Google Scholar 

  35. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P . Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 1996; 93: 10887–10890.

    Article  CAS  Google Scholar 

  36. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 2001; 89: 20–25.

    Article  CAS  Google Scholar 

  37. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 1999; 27: 4324–4327.

    Article  CAS  Google Scholar 

  38. Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M . Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem 1999; 380: 1435–1438.

    Article  CAS  Google Scholar 

  39. Zhang Y, Riesterer C, Ayrall AM, Sablitzky F, Littlewood TD, Reth M . Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res 1996; 24: 543–548.

    Article  CAS  Google Scholar 

  40. Senkus-Konefka E, Konefka T, Jassem J . The effects of tamoxifen on the female genital tract. Cancer Treat Rev 2004; 30: 291–301.

    Article  CAS  Google Scholar 

  41. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  Google Scholar 

  42. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W . Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  Google Scholar 

  43. Moran E, Mathews MB . Multiple functional domains in the adenovirus E1A gene. Cell 1987; 48: 177–178.

    Article  CAS  Google Scholar 

  44. Sassone-Corsi P, Borrelli E . Promoter trans-activation of protooncogenes c-fos and c-myc, but not c-Ha-ras, by products of adenovirus early region 1A. Proc Natl Acad Sci USA 1987; 84: 6430–6433.

    Article  CAS  Google Scholar 

  45. Rhoades KL, Golub SH, Economou JS . The adenoviral transcription factor, E1A 13S, trans-activates the human tumor necrosis factor-alpha promoter. Virus Res 1996; 40: 65–74.

    Article  CAS  Google Scholar 

  46. Krippl B, Ferguson B, Jones N, Rosenberg M, Westphal H . Mapping of functional domains in adenovirus E1A proteins. Proc Natl Acad Sci USA 1985; 82: 7480–7484.

    Article  CAS  Google Scholar 

  47. Geoerger B, van Beusechem VW, Opolon P, Morizet J, Laudani L, Lecluse Y et al. Expression of p53, or targeting towards EGFR, enhances the oncolytic potency of conditionally replicative adenovirus against neuroblastoma. J Gene Med 2005; 7: 584–594.

    Article  CAS  Google Scholar 

  48. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  Google Scholar 

  49. Freundlieb S, Schirra-Muller C, Bujard H . A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1999; 1: 4–12.

    Article  CAS  Google Scholar 

  50. Duque PM, Alonso C, Sanchez-Prieto R, Quintanilla M, Ramon S, Cajal S . Antitumoral effect of E1B defective adenoviruses in human malignant cells. Gene Therapy 1998; 5: 286–287.

    Article  CAS  Google Scholar 

  51. Mandlekar S, Kong AN . Mechanisms of tamoxifen-induced apoptosis. Apoptosis 2001; 6: 469–477.

    Article  CAS  Google Scholar 

  52. Jordan VC . Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 2004; 5: 207–213.

    Article  CAS  Google Scholar 

  53. Grill HJ, Pollow K . Pharmacokinetics of droloxifene and its metabolites in breast cancer patients. Am J Clin Oncol 1991; 14 (Suppl. 2): S21–S29.

    Article  Google Scholar 

  54. Eppenberger U, Wosikowski K, Kung W . Pharmacologic and biologic properties of droloxifene, a new antiestrogen. Am J Clin Oncol 1991; 14 (Suppl. 2): S5–S14.

    Article  Google Scholar 

  55. Yan C, Sever Z, Whitsett JA . Upstream enhancer activity in the human surfactant protein B gene is mediated by thyroid transcription factor 1. J Biol Chem 1995; 270: 24852–24857.

    Article  CAS  Google Scholar 

  56. Edgell CJ, McDonald CC, Graham JB . Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983; 80: 3734–3737.

    Article  CAS  Google Scholar 

  57. Marienfeld U, Haack A, Thalheimer P, Schneider-Rasp S, Brackmann HH, Poller W . ‘Autoreplication’ of the vector genome in recombinant adenoviral vectors with different E1 region deletions and transgenes. Gene Therapy 1999; 6: 1101–1113.

    Article  CAS  Google Scholar 

  58. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy 2000; 7: 1954–1968.

    Article  CAS  Google Scholar 

  59. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Wilhelm Sander-Stiftung to HF (2002.007.1) and by the Cardiovascular Research Center and the Research Committee of Charité – Universitätsmedizin Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fechner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipo, I., Wang, X., Hurtado Picó, A. et al. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo. Gene Ther 13, 173–186 (2006). https://doi.org/10.1038/sj.gt.3302604

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302604

Keywords

This article is cited by

Search

Quick links