Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors

Abstract

The purpose of our study was to evaluate the transduction profiles of herpes simplex virus type 1 (HSV-1)-based amplicon vectors following subretinal injection in the rat. Two amplicon vectors were tested, pHy-CMVGFP and pHy-RPEGFP, both carrying the green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) ubiquitous promoter or the RPE65-specific promoter, respectively. For the two amplicon vectors, the GFP reporter gene was efficiently expressed in retinal pigment epithelial (RPE) cells but not in the adjacent photoreceptors. GFP expression was maximum as early as 2 days postadministration but decreased over time to become almost undetectable at 6 weeks postinjection. Supertransduction with a second amplicon vector, pHSVlac, reactivated expression of GFP in approximately 10% of the cells initially transduced at 2 days postinjection of pHy-CMVGFP or pHy-RPEGFP. Reactivation of transgene expression was transient, no GFP signal was detected 8 days after pHSVlac injection. In conclusion, HSV-1 amplicon vectors allow rapid and efficient, but transient, gene transfer in RPE cells following subretinal injection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vollrath D et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001; 98: 12584–12589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acland GM et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  3. Bainbridge JW et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Therapy 2001; 8: 1665–1668.

    Article  CAS  PubMed  Google Scholar 

  4. Ali RR et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  5. Ali RR et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett J et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Auricchio A et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  8. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber M et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  10. Miyoshi H, Takahashi M, Gage FH, Verma IM . Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 1997; 94: 10319–10323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 1999; 73: 7812–7816.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kostic C et al. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Therapy 2003; 10: 818–821.

    Article  CAS  PubMed  Google Scholar 

  13. Duisit G et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002; 6: 446–454.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X et al. Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp Eye Res 1999; 69: 385–395.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufman PL et al. A perspective of gene therapy in the glaucomas. Surv Ophthalmol 1999; 43: S91–S97.

    Article  PubMed  Google Scholar 

  16. Spencer B et al. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest Ophthalmol Vis Sci 2000; 41: 1392–1401.

    CAS  PubMed  Google Scholar 

  17. Spencer B, Agarwala S, Gentry L, Brandt CR . HSV-1 vector-delivered FGF2 to the retina is neuroprotective but does not preserve functional responses. Mol Ther 2001; 3: 746–756.

    Article  CAS  PubMed  Google Scholar 

  18. Spaete RR, Frenkel N . The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  19. Geller AI, Keyomarsi K, Bryan J, Pardee AB . An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc Natl Acad Sci USA 1990; 87: 8950–8954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim F et al. Generation of high-titer defective HSV-1 vectors using an IE 2 deletion mutant and quantitative study of expression in cultured cortical cells. Biotechniques 1996; 20: 460–469.

    Article  CAS  PubMed  Google Scholar 

  21. Fraefel C et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saeki Y et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998; 9: 2787–2794.

    Article  CAS  PubMed  Google Scholar 

  23. Saeki Y et al. Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  24. Stavropoulos TA, Strathdee CA . An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72: 7137–7143.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Horsburgh BC et al. Allele replacement: an application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Therapy 1999; 6: 922–930.

    Article  CAS  PubMed  Google Scholar 

  26. Wade-Martins R et al. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  27. Oehmig A, Fraefel C, Breakefield XO . Update on herpesvirus amplicon vectors. Mol Ther 2004; 10: 630–643.

    Article  CAS  PubMed  Google Scholar 

  28. Johnston KM et al. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 1997; 8: 359–370.

    Article  CAS  PubMed  Google Scholar 

  29. Fraefel C et al. Gene transfer into hepatocytes mediated by helper virus-free HSV/AAV hybrid vectors. Mol Med 1997; 3: 813–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heister T, Heid I, Ackermann M, Fraefel C . Herpes simplex virus type 1/adeno-associated virus hybrid vectors mediate site-specific integration at the adeno-associated virus preintegration site, AAVS1, on human chromosome 19. J Virol 2002; 76: 7163–7173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Y et al. Herpes simplex virus type 1 amplicon vector-mediated gene transfer to muscle. Hum Gene Ther 2002; 13: 261–273.

    Article  CAS  PubMed  Google Scholar 

  32. Rolling F . Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Therapy 2004; 11: S26–S32.

    Article  CAS  PubMed  Google Scholar 

  33. Hamel CP et al. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 1993; 268: 15751–15757.

    CAS  PubMed  Google Scholar 

  34. Starr PA et al. Long-term persistence of defective HSV-1 vectors in the rat brain is demonstrated by reactivation of vector gene expression. Gene Therapy 1996; 3: 615–623.

    CAS  PubMed  Google Scholar 

  35. Jin BK et al. Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum Gene Ther 1996; 7: 2015–2024.

    Article  CAS  PubMed  Google Scholar 

  36. Triezenberg SJ, Kingsbury RC, McKnight SL . Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev 1988; 2: 718–729.

    Article  CAS  PubMed  Google Scholar 

  37. Tsai DJ, Ho JJ, Ozawa CR, Sapolsky RM . Long-term expression driven by herpes simplex virus type-1 amplicons may fail due to eventual degradation or extrusion of introduced transgenes. Exp Neurol 2000; 165: 58–65.

    Article  CAS  PubMed  Google Scholar 

  38. Geller AI, Breakefield XO . A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 1988; 241: 1667–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith IL, Hardwicke MA, Sandri-Goldin RM . Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 1992; 186: 74–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Anna Skulimowski for critical reading and editing. We thank Robin Ali for providing the RPE65 promoter construct. This work was supported by the Association Française contre les Myopathies (AFM), the INSERM, the Fondation pour la Thérapie Génique en Pays de la Loire, the Lions Clubs International Foundation (LCIF) and the Swiss National Science Foundation No. 3100A0-100195 (CF).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraefel, C., Mendes-Madeira, A., Mabon, O. et al. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors. Gene Ther 12, 1283–1288 (2005). https://doi.org/10.1038/sj.gt.3302553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302553

Keywords

This article is cited by

Search

Quick links