Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock

Abstract

The main barrier to gene transfer in the airway epithelium is the low rate of apical endocytosis limiting naked DNA uptake. Deionized water is known to stimulate the exocytosis of numerous intracellular vesicles during hypotonic cell swelling, in order to expand plasma membrane and prevent cell lysis. This is followed by the phase of regulatory volume decrease (RVD), during which the excess plasma membrane is retrieved by intensive endocytosis. Here we show that the more hypotonic the DNA solution, the higher the transfection of the nasal tissue. P2 receptors are known to be involved in RVD and we demonstrate that some P2 agonists and a P2 antagonist impair transfection in a time-dependent manner. Our study strongly suggests that the nasal airway epithelial cells take up plasmid DNA in deionized water during RVD, within approximately half an hour. Our simple gene delivery system may constitute a promising method for respiratory tract gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alton EWFW et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 1999; 353: 947–954.

    Article  CAS  PubMed  Google Scholar 

  2. Hay JG et al. Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR cDNA adenovirus gene transfer vector. Hum Gene Ther 1995; 6: 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  3. Pickles RJ et al. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 1998; 72: 6014–6023.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Okada Y et al. Exocytosis upon osmotic swelling in human epithelial cells. Biochim Biophys Acta 1992; 1107: 201–205.

    Article  CAS  PubMed  Google Scholar 

  5. Straub S, Daniel S, Sharp GWG . Hyposmotic shock stimulates insulin secretion by two distinct mechanisms. Studies with the βHC9 cell. Am J Physiol Endocrinol Metab 2002; 282: E1070–E1076.

    Article  CAS  PubMed  Google Scholar 

  6. Carton I, Hermans D, Eggermont J . Hypotonicity induces membrane protrusions and actin remodeling via activation of small GTPases Rac and Cdc42 in Rat-1 fibroblasts. Am J Physiol Cell Physiol 2003; 285: C935–C944.

    Article  CAS  PubMed  Google Scholar 

  7. Wilkerson EH, DiBona DR, Schafer JA . Analysis of structural changes during hypotonic swelling in Ehrlich ascites tumor cells. Am J Physiol 1986; 251: C104–C114.

    Article  CAS  PubMed  Google Scholar 

  8. Koberna K et al. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma 1999; 108: 325–335.

    Article  CAS  PubMed  Google Scholar 

  9. Communi D et al. Expression of P2Y receptors in cell lines derived from the human lung. Br J Pharmacol 1999; 127: 562–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Wijk T et al. Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 2003; 278: 40020–40025.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Fernandez JM et al. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am J Physiol Cell Physiol 2002; 283: C1705–C1714.

    Article  CAS  PubMed  Google Scholar 

  12. Sardini A et al. Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta 2003; 1618: 153–162.

    Article  CAS  PubMed  Google Scholar 

  13. Howell LD et al. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Biochem J 2004; 378: 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziady AG et al. Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Mol Ther 2002; 5: 413–419.

    Article  CAS  PubMed  Google Scholar 

  15. Chesnoy S, Huang L . Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol Ther 2002; 5: 57–62.

    Article  CAS  PubMed  Google Scholar 

  16. Manthorpe M et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 1993; 4: 419–431.

    Article  CAS  PubMed  Google Scholar 

  17. Roman RM et al. Endogenous ATP release regulates Cl− secretion in cultured human and rat biliary epithelial cells. Am J Physiol 1999; 276: G1391–G1400.

    Article  CAS  PubMed  Google Scholar 

  18. Schwiebert EM, Zsembery A . Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 2003; 1615: 7–32.

    Article  CAS  PubMed  Google Scholar 

  19. Guyot A, Hanrahan JW . ATP release from human airway epithelial cells studied using a capillary cell culture system. J Physiol 2002; 545: 199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dezaki K, Tsumura T, Maeno E, Okada Y . Receptor-mediated facilitation of cell volume regulation by swelling-induced ATP release in human epithelial cells. Jpn J Physiol 2000; 50: 235–241.

    Article  CAS  PubMed  Google Scholar 

  21. Feranchak AP, Fitz JG, Roman RM . Volume-sensitive purinergic signaling in human hepatocytes. J Hepatol 2000; 33: 174–182.

    Article  CAS  PubMed  Google Scholar 

  22. Koizumi T . Tissue distribution of deoxyribonuclease I (Dnase I) activity level in mice and its sexual dimorphism. Exp Anim 1995; 44: 181–185.

    Article  CAS  PubMed  Google Scholar 

  23. Valverde MA et al. Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci USA 1995; 92: 9038–9041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braunstein GM et al. Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 2001; 276: 6621–6630.

    Article  CAS  PubMed  Google Scholar 

  25. Leipziger J . Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 2003; 284: F419–F432.

    Article  CAS  PubMed  Google Scholar 

  26. Picher M, Boucher RC . Human airway ecto-adenylate kinase. J Biol Chem 2003; 278: 11256–11264.

    Article  CAS  PubMed  Google Scholar 

  27. Light DB, Dahlstrom PK, Gronau RT, Baumann NL . Extracellular ATP activates a P2 receptor in necturus erythrocytes during hypotonic swelling. J Membr Biol 2001; 182: 193–202.

    Article  CAS  PubMed  Google Scholar 

  28. Meyer KB et al. Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics. Gene Therapy 1995; 2: 450–460.

    CAS  PubMed  Google Scholar 

  29. Sawa T et al. Intraluminal water increases expression of plasmid DNA in rat lung. Hum Gene Ther 1996; 7: 933–941.

    Article  CAS  PubMed  Google Scholar 

  30. Gill DR et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  31. Wang G et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J Virol 1998; 72: 9818–9826.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Widdicombe JH, Azizi F, Kang T, Pittet JF . Transient permeabilization of airway epithelium by mucosal water. J Appl Physiol 1996; 81: 491–499.

    Article  CAS  PubMed  Google Scholar 

  33. Koberna K et al. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma 1999; 108: 325–335.

    Article  CAS  PubMed  Google Scholar 

  34. van der Wijk T et al. Increased vesicle recycling in response to osmotic cell swelling. J Biol Chem 2003; 278: 40020–40025.

    Article  CAS  PubMed  Google Scholar 

  35. Griesenbach U, Geddes DM, Alton EWFW . Gene therapy for cystic fibrosis: an example for lung gene therapy. Gene Therapy 2004; 11: S43–S50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yonemitsu Y et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 2000; 18: 970–973.

    Article  CAS  PubMed  Google Scholar 

  37. Ziady A et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 2003; 8: 936–947.

    Article  CAS  PubMed  Google Scholar 

  38. Yew NS et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 2000; 1: 255–262.

    Article  CAS  PubMed  Google Scholar 

  39. Desager KN, Van Bever HP, Stevens WJ . Osmolality and pH of anti-asthmatic drug solutions. Agents Actions 1990; 31: 225–228.

    Article  CAS  PubMed  Google Scholar 

  40. Portel L et al. Osmolarity of solutions used in nebulization. Rev Mal Respir 1998; 15: 191–195.

    CAS  PubMed  Google Scholar 

  41. Crook K, McLachlan G, Stevenson BJ, Porteous DJ . Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolization. Gene Therapy 1996; 3: 834–839.

    CAS  PubMed  Google Scholar 

  42. Griesenbach U et al. The nasal epithelium as a factory for systemic protein delivery. Mol Ther 2001; 5: 98–103.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Xinsheng Nan (University of Edinburgh, UK) for the gift of the plasmid pSVβ and Uta Griesenbach (Imperial College, UK) for helpful discussions. This study was supported by the Cystic Fibrosis Research Trust (UK).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoine, J., Farley, R. & Huang, L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock. Gene Ther 12, 1275–1282 (2005). https://doi.org/10.1038/sj.gt.3302548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302548

Keywords

This article is cited by

Search

Quick links