Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Herpesvirus saimiri-based vector biodistribution using noninvasive optical imaging

Abstract

Herpesvirus saimiri (HVS) is capable of infecting a range of human cell types with high efficiency and the viral genome persists as high copy number, circular, nonintegrated episomes which segregate to progeny upon cell division. This allows the HVS-based vector to stably transduce a dividing cell population and provide sustained transgene expression for an extended period of time both in vitro and in vivo. Here we assess the dissemination of HVS-based vectors in vivo following intravenous and intraperitoneal administration. Bioluminescence imaging of an HVS-based vector expressing luciferase demonstrates that the virus can infect and establish a persistent latent infection in a variety of mouse tissues. Moreover, the long-term in vivo maintenance of the HVS genome as a nonintegrated circular episome provided sustained expression of luciferase over a 10-week period. A particularly high level of transgene expression in the liver and the ability of HVS to infect and persist in hepatic stellate cells suggest that HVS-based vectors may have potential for the treatment of inherited and acquired liver diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bogdanov Jr A, Weissleder R . The development of in vivo imaging systems to study gene expression. Trends Biotechnol 1998; 16: 5–10.

    Article  CAS  PubMed  Google Scholar 

  2. Nichol C, Kim EE . Molecular imaging and gene therapy. J Nucl Med 2001; 42: 1368–1374.

    CAS  PubMed  Google Scholar 

  3. Min JJ, Gambhir SS . Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Therapy 2004; 11: 115–125.

    Article  CAS  PubMed  Google Scholar 

  4. Rudin M, Weissleder R . Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003; 2: 123–131.

    Article  CAS  PubMed  Google Scholar 

  5. Weissleder R . Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002; 2: 11–18.

    Article  CAS  PubMed  Google Scholar 

  6. Weissleder R, Ntziachristos V . Shedding light onto live molecular targets. Nat Med 2003; 9: 123–128.

    Article  CAS  PubMed  Google Scholar 

  7. Gambhir SS . Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002; 2: 683–693.

    Article  CAS  PubMed  Google Scholar 

  8. Groot-Wassink T et al. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004; 9: 436–442.

    Article  CAS  PubMed  Google Scholar 

  9. Contag PR, Olomu IN, Stevenson DK, Contag CH . Bioluminescent indicators in living mammals. Nat Med 1998; 4: 245–247.

    Article  CAS  PubMed  Google Scholar 

  10. Contag CH et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997; 66: 523–531.

    Article  CAS  PubMed  Google Scholar 

  11. Contag CH, Jenkins D, Contag PR, Negrin RS . Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000; 2: 41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhaumik S, Gambhir SS . Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 2002; 99: 377–382.

    Article  CAS  PubMed  Google Scholar 

  13. Wu JC, Sundaresan G, Iyer M, Gambhir SS . Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001; 4: 297–306.

    Article  CAS  PubMed  Google Scholar 

  14. Iyer M, Berenji M, Templeton NS, Gambhir SS . Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol Ther 2002; 6: 555–562.

    Article  CAS  PubMed  Google Scholar 

  15. Hildebrandt IJ, Iyer M, Wagner E, Gambhir SS . Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Therapy 2003; 10: 758–764.

    Article  CAS  PubMed  Google Scholar 

  16. Adams JY et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002; 8: 891–897.

    Article  CAS  PubMed  Google Scholar 

  17. De A, Lewis XZ, Gambhir SS . Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 2003; 7: 681–691.

    Article  CAS  PubMed  Google Scholar 

  18. Albrecht J et al. Primary structure of the herpesvirus saimiri genome. J Virol 1992; 66: 5047–5058.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fickenscher H, Fleckenstein B . Herpesvirus saimiri. Philos Trans R Soc 2001; 356: 545–567.

    Article  CAS  Google Scholar 

  20. Duboise SM et al. STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol 1998; 72: 1308–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grassmann R, Fleckenstein B . Selectable recombinant herpesvirus saimiri is capable of persisting in a human T-cell line. J Virol 1989; 63: 1818–1821.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simmer B et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J Gen Virol 1991; 72: 1953–1958.

    Article  PubMed  Google Scholar 

  23. Stevenson AJ et al. Assessment of herpesvirus saimiri as a potential human gene therapy vector. J Med Virol 1999; 57: 269–277.

    Article  CAS  PubMed  Google Scholar 

  24. Stevenson AJ et al. Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Therapy 2000; 7: 464–471.

    Article  CAS  PubMed  Google Scholar 

  25. Hall KT et al. Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol 2000; 74: 7331–7337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calderwood MA, White RE, Whitehouse A . Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opin Biol Ther 2004; 4: 493–505.

    Article  CAS  PubMed  Google Scholar 

  27. Desrosiers RC, Daniel PS, Waldron LM, Letvin NL . Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. J Virol 1986; 57: 701–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith PG, Coletta PL, Markham AF, Whitehouse A . In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Therapy 2001; 8: 1762–1769.

    Article  CAS  PubMed  Google Scholar 

  29. Giles MS et al. The herpesvirus saimiri ORF73 regulatory region provides long-term transgene expression in human carcinoma cell lines. Cancer Gene Ther 2003; 10: 49–56.

    Article  CAS  PubMed  Google Scholar 

  30. Smith PG et al. Efficient infection and persistence of a herpesvirus saimiri-based gene delivery vector into human tumour xenografts and multicellular spheroid cultures. Cancer Gene Ther 2005; 12: 248–256.

    Article  CAS  PubMed  Google Scholar 

  31. White RE, Calderwood MA, Whitehouse A . Generation and precise modification of a herpesvirus saimiri bacterial artificial chromosome demonstrates that the terminal repeats are required for both virus production and episomal persistence. J Gen Virol 2003; 84: 3393–3403.

    Article  CAS  PubMed  Google Scholar 

  32. Goodwin DJ et al. The open reading frame 57 gene product of herpesvirus saimiri shuttles between the nucleus and cytoplasm and is involved in viral RNA nuclear export. J Virol 1999; 73: 10519–17337.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Decker LL, Klaman LD, Thorley-Lawson DA . Detection of the latent form of Epstein–Barr virus DNA in the peripheral blood of healthy individuals. J Virol 1996; 70: 3286–3289.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stewart JP et al. Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 1998; 187: 1941–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Decker LL, Babcock GJ, Thorley-Lawson DA . Detection and discrimination of latent and replicative herpesvirus infection at the single cell level in vivo. Methods Mol Biol 2001; 174: 111–116.

    CAS  PubMed  Google Scholar 

  36. Friedman SL . Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247–2250.

    Article  CAS  PubMed  Google Scholar 

  37. Edinger M et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002; 38: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  38. Luker GD et al. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 2002; 76: 12149–12161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akula SM, Wang FZ, Vieira J, Chandran B . Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology 2001; 282: 245–255.

    Article  CAS  PubMed  Google Scholar 

  40. Prieto J et al. The promise of gene therapy in gastrointestinal and liver diseases. Gut 2003; 52 (Suppl 2): ii49–ii54.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Janoschek N, van de Leur E, Gressner AM, Weiskirchen R . Induction of cell death in activated hepatic stellate cells by targeted gene expression of the thymidine kinase/ganciclovir system. Biochem Biophys Res Commun 2004; 316: 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  42. Gao R et al. High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver 2002; 22: 15–22.

    Article  PubMed  Google Scholar 

  43. Weiskirchen R et al. Comparative evaluation of gene delivery devices in primary cultures of rat hepatic stellate cells and rat myofibroblasts. BMC Cell Biol 2000; 1: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hart SL et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther 1998; 9: 575–585.

    Article  CAS  PubMed  Google Scholar 

  45. Manthorpe M et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 1993; 4: 419–431.

    Article  CAS  PubMed  Google Scholar 

  46. Wright MC et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 2001; 121: 685–698.

    Article  CAS  PubMed  Google Scholar 

  47. Hall KT et al. Characterization of the herpesvirus saimiri ORF73 gene product. J Gen Virol 2000; 81: 2653–2658.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants to AW from the Association of International Cancer Research, Yorkshire Cancer Research, Candlelighter's Trust and the Royal Society, to NL from Cancer Research UK, and to DAM from the Wellcome Trust (050443/Z and 068524/Z/02/Z) and the Medical Research Council (COG component grant 69900279).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P., Oakley, F., Fernandez, M. et al. Herpesvirus saimiri-based vector biodistribution using noninvasive optical imaging. Gene Ther 12, 1465–1476 (2005). https://doi.org/10.1038/sj.gt.3302543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302543

Keywords

This article is cited by

Search

Quick links