Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Full kringles of plasminogen (aa 1–566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice

Abstract

Since kringle (K)5, not present in the angiostatin molecule, was shown to be a key functional domain possessing potent antiangiogenic activity, we have evaluated a new plasminogen-derived fragment, consisting of the N-terminal part of human plasminogen, that included the complete secondary structure of K1–5 (aa 1–566). In contrast to other fragments described to date, K1–5 includes cysteine residues at positions 543, 555 and 560 allowing the formation of the three disulfide bonds lying within K5. Vascular endothelial cell proliferation and migration assays revealed that a replication-defective adenovirus (AdK1–5(1–566)), expressing K1–5 (aa 1–566), was dose dependently more potent that AdK1–3(1–354), an adenovirus that expresses only the first three kringles. In contrast to AdK1–3(1–354), a single intratumoral injection of AdK1–5(1–566) into MDA-MB-231 breast human carcinoma tumors was followed by a total regression of 40% of the tumor and by significant arrest of tumor growth (90%), which was correlated with a drastic decrease of functional neovascularization into the tumors. Furthermore, systemic delivery of AdK1–5(1–566) in mice inhibited the lung invasion of melanoma B16-F10 cells by 87%. Our findings provide evidence that the full kringles of plasminogen (aa 1–566) may be much more potent than K1–3 (aa 1–354), for the suppression of angiogenesis, tumor growth and metastatic dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  CAS  Google Scholar 

  2. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  Google Scholar 

  3. O'Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediated the suppression of metastases by Lewis lung carcinoma. Cell 1994; 79: 315–328.

    Article  CAS  Google Scholar 

  4. O'Reilly MO et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  CAS  Google Scholar 

  5. Kamphaus GD et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000; 275: 1209–1215.

    Article  CAS  Google Scholar 

  6. Clapp C et al. The 16 kDa N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 1993; 133: 1292–1299.

    Article  CAS  Google Scholar 

  7. Gupta SK, Hassel T, Singh JP . A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4. Proc Natl Acad Sci USA 1995; 92: 7799–7803.

    Article  CAS  Google Scholar 

  8. Gately S et al. Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res 1996; 56: 4887–4890.

    CAS  PubMed  Google Scholar 

  9. O'Mahony CA et al. Angiostatin generation by human pancreatic cancer. J Surg Res 1998; 77: 55–58.

    Article  CAS  Google Scholar 

  10. Westphal JR et al. Angiostatin generation by human tumor cell lines: involvement of plasminogen activator. Int J Cancer 2000; 86: 760–767.

    Article  CAS  Google Scholar 

  11. Cao Y et al. Kringle domains of human angiostatin. J Biol Chem 1996; 271: 29461–29467.

    Article  CAS  Google Scholar 

  12. Ji RW et al. Characterization of kringle domains of angiostatin as antagonist of endothelial cell migration, an important process in angiogenesis. FASEB J 1998; 12: 1731–1738.

    Article  CAS  Google Scholar 

  13. Tanaka T, Cao Y, Folkman J, Fine HA . Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 1998; 58: 3362–3369.

    CAS  Google Scholar 

  14. McDonald NJ et al. The tumor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem Biophys Res Commun 1999; 264: 469–477.

    Article  Google Scholar 

  15. Cao Y et al. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 1997; 272: 22924–22928.

    Article  CAS  Google Scholar 

  16. Ji RW et al. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 1998; 247: 414–419.

    Article  CAS  Google Scholar 

  17. Cao R et al. Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 1999; 96: 5728–5733.

    Article  CAS  Google Scholar 

  18. Li F et al. Human glioma cell BT325 expresses a proteinase that converts human plasminogen to kringle 1–5-containing fragments. Biochem Biophys Res Commun 2000; 278: 821–825.

    Article  CAS  Google Scholar 

  19. Handford AH et al. Angiostatin 4.5-mediated apoptosis of vascular endothelial cells. Cancer Res 2003; 63: 4275–4280.

    Google Scholar 

  20. Bouquet C, Frau E et al. Systemic administration of a recombinant adenovirus encoding a HSA-angistatin kringle 1–3 conjugate inhibits MDA-MB-231 tumor growth and metastasis in a transgenic model of spontaneous eye cancer. Mol Ther 2003; 7: 174–183.

    Article  CAS  Google Scholar 

  21. Dong Z, Kumar R, Yang X, Fidler I . Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997; 88: 801–810.

    Article  CAS  Google Scholar 

  22. Griscelli F et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation with a mitosis arrest. Proc Natl Acad Sci USA 1998; 95: 6367–6372.

    Article  CAS  Google Scholar 

  23. Griscelli F et al. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. Proc Natl Acad Sci USA 2000; 97: 6698–6703.

    Article  CAS  Google Scholar 

  24. Galaup A et al. Combined effects of docetaxel and angiostatin gene therapy in prostate tumor model. Mol Ther 2003; 6: 731–740.

    Article  Google Scholar 

  25. Bergers G et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–812.

    Article  CAS  Google Scholar 

  26. Troyanovsky B et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 2001; 152: 1247–1254.

    Article  CAS  Google Scholar 

  27. Brooks PC et al. Integrin alpha vs beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–1164.

    Article  CAS  Google Scholar 

  28. Claesson-Welsh L et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 1998; 95: 5579–5583.

    Article  CAS  Google Scholar 

  29. Moser TL et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999; 96: 2811–2816.

    Article  CAS  Google Scholar 

  30. Crouzet J et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc Natl Acad Sci USA 1997; 18: 1414–1419.

    Article  Google Scholar 

  31. Stratford-Perricaudet L, Maked I, Perricaudet M, Briand P . Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992; 90: 626–630.

    Article  CAS  Google Scholar 

  32. Tamura M et al. Inhibition of cell migration spreading, focal adhesions by tumor suppressor PTEN. Science 1998; 280: 1614–1617.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the SCEA and specially M Stanciu, D Challuau and P Ardouin for animal care, E Connault for technical assistance, I Chawi for echography analysis, C Bouquet for the kind gift of pMP13 plasmid and N Lamandé (Inserm U36 – Collège de France) for the kind gift of HUVECs. We warmly acknowledge B Mullan and M Mackenthun for critical reading. Le Centre National de la Santé et de la Recherche Scientifique (CNRS), la ligue nationale contre le cancer and l'Association pour la Recherche sur le Cancer (ARC) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galaup, A., Magnon, C., Rouffiac, V. et al. Full kringles of plasminogen (aa 1–566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice. Gene Ther 12, 831–842 (2005). https://doi.org/10.1038/sj.gt.3302474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302474

Keywords

This article is cited by

Search

Quick links