Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis

Abstract

Gene therapy of cystic fibrosis (CF) lung disease needs highly efficient delivery and long-lasting complementation of the CFTR (cystic fibrosis transmembrane conductance regulator) gene into the respiratory epithelium. The development of lentiviral vectors has been a recent advance in the field of gene transfer and therapy. These integrating vectors appear to be promising vehicles for gene delivery into respiratory epithelial cells by virtue of their ability to infect nondividing cells and mediate long-term persistence of transgene expression. Studies in human airway tissues and animal models have highlighted the possibility of achieving gene expression by lentiviral vectors, which outlasted the normal lifespan of the respiratory epithelium, indicating targeting of a ‘stem cell’ compartment. Modification of the paracellular permeability and pseudotyping with heterologous envelopes are the strategies currently used to overcome the paucity of specific viral receptors on the apical surface of airway epithelial cells and to reach the basolateral surface receptors. Preclinical studies on CF mice, demonstrating complementation of the CF defect, offer hope that lentivirus gene therapy can be translated into an effective treatment of CF lung disease. Besides a direct targeting of the stem/progenitor niche(s) in the CF airways, an alternative approach may envision homing of hematopoietic stem cells engineered to express the CFTR gene by lentiviral vectors. In the context of lentivirus-mediated CFTR gene transfer to the CF airways, biosafety aspects should be of primary concern.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ratjen F, Döring G . Cystic fibrosis. Lancet 2003; 361: 681–689.

    CAS  PubMed  Google Scholar 

  2. Griesenbach U, Ferrari S, Geddes DM, Alton EWFW . Gene therapy progress and prospects: cystic fibrosis. Gene Therapy 2002; 9: 1344–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Harvey BG et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administrations of a recombinant adenovirus. J Clin Invest 1999; 104: 1245–1255.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yew NS et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 1999; 10: 223–234.

    CAS  PubMed  Google Scholar 

  5. Flotte TR et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 1993; 90: 10613–10617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conrad CK et al. Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Therapy 1996; 3: 658–668.

    CAS  PubMed  Google Scholar 

  7. Wagner JA et al. Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus. Lancet 1998; 351: 1702–1703.

    Article  CAS  PubMed  Google Scholar 

  8. Flotte TR, Afione SA, Zeitlin PL . Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 1994; 11: 517–521.

    CAS  PubMed  Google Scholar 

  9. Afione SA et al. In vivo model of adeno-associated virus vector persistence and rescue. J Virol 1996; 70: 3235–3241.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kearns WG et al. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Therapy 1996; 3: 748–755.

    CAS  PubMed  Google Scholar 

  11. Engelhardt JF, Yankaskas JR, Wilson JM . In vivo retroviral gene transfer into human bronchial epithelia of xenografts. J Clin Invest 1992; 90: 2598–2607.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bukrinsky MI et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-diving cells. Nature 1993; 365: 666–669.

    CAS  PubMed  Google Scholar 

  13. Trono D . Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Therapy 2000; 7: 20–23.

    Article  CAS  PubMed  Google Scholar 

  14. Delenda C . Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6: S125–S138.

    CAS  PubMed  Google Scholar 

  15. Saenz DT, Poeschla EM . FIV: from lentivirus to lentivector. J Gene Med 2004; 6: S95–S104.

    CAS  PubMed  Google Scholar 

  16. Naldini L, Verma IM . Lentiviral vectors. Adv Virus Res 2000; 55: 599–609.

    CAS  PubMed  Google Scholar 

  17. Ailles LE, Naldini L . HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 2002; 261: 31–52.

    CAS  PubMed  Google Scholar 

  18. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  19. Verhoeyen E, Cosset F-L . Surface-engineering of lentiviral vectors. J Gene Med 2004; 6: S83–S94.

    CAS  PubMed  Google Scholar 

  20. Naldini L et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    CAS  PubMed  Google Scholar 

  22. Dull T et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Follenzi A et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    CAS  PubMed  Google Scholar 

  25. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramezani A, Hawley TS, Hawley RG . Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2000; 2: 458–469.

    CAS  PubMed  Google Scholar 

  27. Vigna E, Naldini L . Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2000; 2: 308–316.

    CAS  PubMed  Google Scholar 

  28. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17: 314–317.

    Article  CAS  PubMed  Google Scholar 

  29. Johnston JC et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999; 73: 4991–5000.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Curran MA, Kaiser SM, Achacoso PL, Nolan GP . Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 2000; 1: 31–38.

    CAS  PubMed  Google Scholar 

  31. Bragonzi A, Conese M . Non-viral approach toward gene therapy of cystic fibrosis lung disease. Curr Gene Ther 2002; 2: 295–305.

    CAS  PubMed  Google Scholar 

  32. Ferrari S, Griesenbach U, Geddes DM, Alton E . Immunological hurdles to lung gene therapy. Clin Exp Immunol 2003; 132: 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pilewski JM . Gene therapy for airway diseases: continued progress toward identifying and overcoming barriers to efficiency. Am J Respir Cell Mol Biol 2002; 27: 117–121.

    CAS  PubMed  Google Scholar 

  34. Wang G et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J Virol 1998; 72: 9818–9826.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang G et al. Keratinocyte growth factor induced epithelial proliferation facilitates retroviral-mediated gene transfer to distal lung epithelia in vivo. J Gene Med 1999; 1: 22–30.

    CAS  PubMed  Google Scholar 

  36. Engelhardt JF et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet 1993; 4: 27–34.

    CAS  PubMed  Google Scholar 

  37. Goldman MJ, Yang Y, Wilson JM . Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Nat Genet 1995; 9: 126–131.

    CAS  PubMed  Google Scholar 

  38. Goldman MJ et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997; 88: 553–560.

    CAS  PubMed  Google Scholar 

  39. Goldman MJ, Lee PS, Yang JS, Wilson JM . Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther 1997; 8: 2261–2268.

    CAS  PubMed  Google Scholar 

  40. Borok Z et al. Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells. J Virol 2001; 75: 11747–11754.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson LG, Olsen JC, Naldini L, Boucher R . Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo. Gene Therapy 2000; 7: 568–574.

    CAS  PubMed  Google Scholar 

  42. Limberis M, Anson DS, Fuller M, Parsons DW . Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther 2002; 13: 1961–1970.

    CAS  PubMed  Google Scholar 

  43. Bothwick DW et al. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 2001; 24: 662–670.

    Google Scholar 

  44. Wang G et al. Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J Clin Invest 1999; 104: R55–R62.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zsengeller ZK et al. Keratinocyte growth factor stimulates transduction of the respiratory epithelium by retroviral vectors. Hum Gene Ther 1999; 10: 341–353.

    CAS  PubMed  Google Scholar 

  46. Pickles RJ, Barker PM, Ye H, Boucher RC . Efficient adenovirus-mediated gene transfer to basal but not columnar cells from cartilaginous airway epithelia. Hum Gene Ther 1996; 7: 921–931.

    CAS  PubMed  Google Scholar 

  47. Duan D et al. Polarity influences the efficiency of recombinant adenoassociate virus infection in differentiated airway epithelia. Hum Gene Ther 1998; 9: 2761–2776.

    CAS  PubMed  Google Scholar 

  48. Duan D et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pickles RJ et al. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 1998; 72: 6014–6023.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobinger GP, Weiner DJ, Yu Q-C, Wilson JM . Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 2001; 19: 225–230.

    CAS  PubMed  Google Scholar 

  51. Guibinga GH, Miyanohara A, Esko JD, Friedmann T . Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells. Mol Ther 2002; 5: 538–546.

    CAS  PubMed  Google Scholar 

  52. Argyris EG et al. Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J Virol 2003; 77: 12140–12151.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bobardt MD et al. Syndecan captures, protects, and transmits HIV to lymphocytes. Immunity 2003; 18: 27–39.

    CAS  PubMed  Google Scholar 

  54. Saphire ACS et al. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol 2001; 75: 9187–9200.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan SY, Speck RF, Ma MC, Goldsmith MA . Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 2000; 74: 4933–4937.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Medina MF et al. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 2003; 8: 777–789.

    PubMed  Google Scholar 

  57. Kang Y et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River virus glycoproteins. J Virol 2002; 76: 9378–9388.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pilewski JM, Frizzell RA . Role of CFTR in airway disease. Physiol Rev 1999; 79: S215–S255.

    CAS  PubMed  Google Scholar 

  59. Donaldson SH, Boucher RC . Update on pathogenesis of cystic fibrosis lung disease. Curr Opin Pulm Med 2003; 9: 486–491.

    PubMed  Google Scholar 

  60. Boucher RC . Status of gene therapy for cystic fibrosis lung disease. J Clin Invest 1999; 103: 441–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Engelhardt JF et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 1992; 2: 240–247.

    CAS  PubMed  Google Scholar 

  62. McCray P, Wohlford-Lenane C, Snyder J . Localisation of cystic fibrosis transmembrane conductance regulator mRNA in human fetal lung tissue by in situ hybridization. J Clin Invest 1992; 90: 619–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Otto WR . Lung epithelial stem cells. J Pathol 2002; 197: 527–535.

    CAS  PubMed  Google Scholar 

  64. Mason RJ et al. Stem cells in lung development, disease, and therapy. Am J Respir Cell Mol Biol 1997; 16: 355–363.

    CAS  PubMed  Google Scholar 

  65. Engelhardt JF, Schlossberg H, Yankaskas J, Dudus L . Progenitor cells of the adult human airway involved in submucosal gland development. Development 1995; 121: 2031–2046.

    CAS  PubMed  Google Scholar 

  66. Borthwick DW et al. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 2001; 24: 662–670.

    CAS  PubMed  Google Scholar 

  67. Péault B et al. Gene transfer to human fetal pulmonary tissue developed in immunodeficient SCID mice. Hum Gene Ther 1994; 5: 1131–1137.

    PubMed  Google Scholar 

  68. Puchelle E, Peault B . Human airway xenograft models of epithelial cell regeneration. Respir Res 2000; 1: 125–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim FY et al. Human fetal trachea-scid mouse xenografts: efficacy of vesicular stomatitis virus-G pseudotyped lentiviral-mediated gene transfer. J Pediatr Surg 2003; 38: 834–839.

    PubMed  Google Scholar 

  70. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279: 1528–1530.

    CAS  PubMed  Google Scholar 

  71. Krause DS et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377.

    CAS  PubMed  Google Scholar 

  72. Jiang Y et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    CAS  PubMed  Google Scholar 

  73. Kotton DN et al. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 2001; 128: 5181–5188.

    CAS  PubMed  Google Scholar 

  74. Herzog EL, Chai L, Krause DS . Plasticity of marrow derived stem cells. Blood 2003; 102: 3483–3493.

    CAS  PubMed  Google Scholar 

  75. Kleeberger W et al. Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol 2003; 162: 1487–1494.

    PubMed  PubMed Central  Google Scholar 

  76. Davies JC et al. Bone marrow stem cells do not repopulate the healthy upper respiratory tract. Pediatr Pulmonol 2002; 34: 251–256.

    PubMed  Google Scholar 

  77. Asahara T, Kalka C, Isner JM . Stem cell therapy and gene transfer for regeneration. Gene Therapy 2000; 7: 451–457.

    CAS  PubMed  Google Scholar 

  78. Baltimore RS, Christie CDC, Smith GJW . Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for pathogenesis of progressive deterioration. Am Rev Respir Dis 1989; 140: 1650–1661.

    CAS  PubMed  Google Scholar 

  79. Leigh MW, Kylander JE, Yankaskas JR, Boucher RC . Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients. Am J Respir Cell Mol Biol 1995; 12: 605–612.

    CAS  PubMed  Google Scholar 

  80. Grove JE et al. Marrow-derived cells as vehicles for delivery of gene therapy to pulmonary epithelium. Am J Respir Cell Mol Biol 2002; 27: 645–651.

    CAS  PubMed  Google Scholar 

  81. Jones RJ et al. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 1990; 347: 188–189.

    CAS  PubMed  Google Scholar 

  82. Ploemacher RE et al. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 1991; 78: 2527–2533.

    CAS  PubMed  Google Scholar 

  83. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH . An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 1989; 74: 2755–2763.

    CAS  PubMed  Google Scholar 

  84. Traycoff CM, Kosak ST, Grigsby S, Stour EF . Evaluation of ex vivo expansion potential of cord blood and bone marrow hematopoietic progenitor cells using cell tracking and limiting dilution analysis. Blood 1995; 85: 2059–2068.

    CAS  PubMed  Google Scholar 

  85. Larochelle A et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    CAS  PubMed  Google Scholar 

  86. Bodine DM, Crosier PS, Clark SC . Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture. Blood 1991; 78: 914–920.

    CAS  PubMed  Google Scholar 

  87. Gothot A, van der Loo JC, Clapp DW, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood 1998; 92: 2641–2649.

    CAS  PubMed  Google Scholar 

  88. Harrison DE, Lerner CP, Spooncer E . Erythropoietic repopulating ability of stem cells from long-term marrow culture. Blood 1987; 69: 1021–1025.

    CAS  PubMed  Google Scholar 

  89. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  90. Tisdale JF et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998; 92: 1131–1141.

    CAS  PubMed  Google Scholar 

  91. Orlic D et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA 1996; 93: 11097–11102.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Logan AC, Lutzko C, Kohn DB . Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr Opin Biotechnol 2002; 13: 429–436.

    CAS  PubMed  Google Scholar 

  93. Miyoshi H et al. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    CAS  PubMed  Google Scholar 

  94. Guenechea G et al. Transduction of human CD34+ CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 2000; 1: 566–573.

    CAS  PubMed  Google Scholar 

  95. Sutton RE et al. Human immunodeficiency virus type I vectors efficiently transduce human hematopoietic stem cells. J Virol 1998; 72: 5781–5788.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Evans JT, Kelly PF, O’Neill E, Garcia JV . Human cord blood CD34+CD38− cell transduction via lentivirus-based gene transfer vectors. Hum Gene Ther 1999; 10: 1479–1489.

    CAS  PubMed  Google Scholar 

  97. Uchida N et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998; 95: 11939–11944.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Case SS et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999; 96: 2988–2993.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Simmons G et al. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 2002; 76: 2518–2528.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang ZY et al. Identification of the Ebola virus glycoproteins as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 2000; 6: 886–889.

    CAS  PubMed  Google Scholar 

  101. Johnson LG et al. Safety and efficiency of modulating paracellular permeability to enhance airway epithelial gene transfer in vivo. Hum Gene Ther 2003; 14: 729–747.

    CAS  PubMed  Google Scholar 

  102. Coyne BC, Kelly MM, Boucher RC, Johnson LG . Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate. Am J Respir Cell Mol Biol 2000; 23: 602–609.

    CAS  PubMed  Google Scholar 

  103. Gregory LG et al. Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo. Mol Ther 2003; 7: 19–26.

    CAS  PubMed  Google Scholar 

  104. Moss RB et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis. Chest 2004; 125: 509–521.

    PubMed  Google Scholar 

  105. Koehler DR et al. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci USA 2003; 100: 15364–15369.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rajan S et al. Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Am J Respir Cell Mol Biol 2000; 23: 304–312.

    CAS  PubMed  Google Scholar 

  107. Yankaskas JR et al. Papilloma virus immortalized tracheal epithelial cells retain a well-differentiated phenotype. Am J Physiol 1993; 264: C1219–C1230.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Follenzi and L Naldini for providing us with the lentiviral vector used in this study. This work was supported by Italian Cystic Fibrosis Research Foundation and Associazione Lombarda Fibrosi Cistica – ONLUS.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copreni, E., Penzo, M., Carrabino, S. et al. Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis. Gene Ther 11 (Suppl 1), S67–S75 (2004). https://doi.org/10.1038/sj.gt.3302372

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302372

Keywords

This article is cited by

Search

Quick links