Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer

Abstract

The hepatotropism and intrahepatic distribution of adenoviral vectors may be species dependent. Hepatocyte transduction was evaluated in three rabbit strains after transfer with E1E3E4-deleted adenoviral vectors containing a hepatocyte specific α1-antitrypsin promoter-driven expression cassette (AdAT4). Intravenous administration of 4 × 1012 particles/kg of AdAT4 induced human apo A-I levels above 40 mg/dl in Dutch Belt, but below 1 mg/dl in New Zealand White and Fauve de Bourgogne rabbits. Diameters of sinusoidal fenestrae were significantly (P=0.0014) larger in Dutch Belt (124±3.4 nm) than in New Zealand White (108±1.3 nm) and Fauve de Bourgogne (105±2.6 nm) rabbits, suggesting that a smaller size constitutes a barrier for hepatocyte transduction. Indeed, intraportal transfer preceded by intraportal injection of sodium decanoate, which increases the diameter of sinusoidal fenestrae to 123±3.4 nm (P<0.01) in New Zealand White rabbits, increased human apo A-I levels 32- and 120-fold in New Zealand White and Fauve de Bourgogne rabbits, respectively, but did not affect expression in Dutch Belt rabbits. In conclusion, size of sinusoidal fenestrae appears to be a critical determinant of hepatocyte transduction after adenoviral transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brousseau ME, Hoeg JM . Transgenic rabbits as models for atherosclerosis research. J Lipid Res 1999; 40: 365–375.

    CAS  PubMed  Google Scholar 

  2. Greeve J et al. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res 1993; 34: 1367–1383.

    CAS  PubMed  Google Scholar 

  3. Nagashima M, McLean JW, Lawn RM . Cloning and mRNA tissue distribution of rabbit cholesteryl ester transfer protein. J Lipid Res 1988; 29: 1643–1649.

    CAS  PubMed  Google Scholar 

  4. Shore B, Shore V . Rabbits as a model for the study of hyperlipoproteinemia and atherosclerosis. Adv Exp Med Biol 1976; 67: 123–141.

    Article  CAS  PubMed  Google Scholar 

  5. Fraser R, Dobbs BR, Rogers GW . Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 1995; 21: 863–874.

    CAS  PubMed  Google Scholar 

  6. Kozarsky KF et al. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994; 269: 13695–13702.

    CAS  PubMed  Google Scholar 

  7. Brown DR et al. Adenoviral delivery of low-density lipoprotein receptors to hyperlipidemic rabbits: receptor expression modulates high-density lipoproteins. Metabolism 1996; 45: 1447–1457.

    Article  CAS  PubMed  Google Scholar 

  8. Kozarsky KF et al. Hepatic expression of the catalytic subunit of the apolipoprotein B mRNA editing enzyme (apobec-1) ameliorates hypercholesterolemia in LDL receptor-deficient rabbits. Hum Gene Ther 1996; 7: 943–957.

    Article  CAS  PubMed  Google Scholar 

  9. Cichon G et al. Intravenous administration of recombinant adenoviruses causes thrombocytopenia, anemia and erythroblastosis in rabbits. J Gene Med 1999; 1: 360–371.

    Article  CAS  PubMed  Google Scholar 

  10. Li J et al. In vivo gene therapy for hyperlipidemia: phenotypic correction in Watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene. J Clin Invest 1995; 95: 768–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perlino E, Cortese R, Ciliberto G . The human alpha 1-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes. EMBO J 1987; 6: 2767–2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shachter NS et al. Localization of a liver-specific enhancer in the apolipoprotein E/C-I/C-II gene locus. J Lipid Res 1993; 34: 1699–1707.

    CAS  PubMed  Google Scholar 

  13. Okuyama T et al. Liver-directed gene therapy: a retroviral vector with a complete LTR and the ApoE enhancer-alpha 1-antitrypsin promoter dramatically increases expression of human alpha 1-antitrypsin in vivo. Hum Gene Ther 1996; 7: 637–645.

    Article  CAS  PubMed  Google Scholar 

  14. Van Linthout S, Collen D, De Geest B . Effect of promoters and enhancers on expression, transgene DNA persistence, and hepatotoxicity after adenoviral gene transfer of human apolipoprotein A-I. Hum Gene Ther 2002; 13: 829–840.

    Article  CAS  PubMed  Google Scholar 

  15. Van Linthout S, Lusky M, Collen D, De Geest B . Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Ther 2002; 9: 1520–1528.

    Article  CAS  PubMed  Google Scholar 

  16. Mount JD et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99: 2670–2676.

    Article  CAS  PubMed  Google Scholar 

  17. Kaner RJ et al. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol 1999; 20: 361–370.

    Article  CAS  PubMed  Google Scholar 

  18. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  19. Ganey PE, Schultze AE . Depletion of neutrophils and modulation of Kupffer cell function in allyl alcohol-induced hepatotoxicity. Toxicology 1995; 99: 99–106.

    Article  CAS  PubMed  Google Scholar 

  20. Wright PL, Smith KF, Day WA, Fraser R . Small liver fenestrae may explain the susceptibility of rabbits to atherosclerosis. Arteriosclerosis 1983; 3: 344–348.

    Article  CAS  PubMed  Google Scholar 

  21. Gatmaitan Z et al. Studies on fenestral contraction in rat liver endothelial cells in culture. Am J Pathol 1996; 148: 2027–2041.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baker TS, Olson NH, Fuller SD . Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63: 862–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gregory LG et al. Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo. Mol Ther 2003; 7: 19–26.

    Article  CAS  PubMed  Google Scholar 

  24. Okumura S et al. Transport of drugs across the Xenopus pulmonary membrane and their absorption enhancement by various absorption enhancers. Pharm Res 1996; 13: 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  25. Braet F et al. Structure and dynamics of the fenestrae-associated cytoskeleton of rat liver sinusoidal endothelial cells. Hepatology 1995; 21: 180–189.

    CAS  PubMed  Google Scholar 

  26. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  27. Mizuguchi H et al. CAR- or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Ther 2002; 9: 769–776.

    Article  CAS  PubMed  Google Scholar 

  28. Hautala T et al. An interaction between penton base and alpha v integrins plays a minimal role in adenovirus-mediated gene transfer to hepatocytes in vitro and in vivo. Gene Ther 1998; 5: 1259–1264.

    Article  CAS  PubMed  Google Scholar 

  29. Smith TA et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14: 777–787.

    Article  CAS  PubMed  Google Scholar 

  30. Smith TA et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003; 14: 1595–1604.

    Article  CAS  PubMed  Google Scholar 

  31. Fechner H et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  32. Neubauer K, Saile B, Ramadori G . Liver fibrosis and altered matrix synthesis. Can J Gastroenterol 2001; 15: 187–193.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Banuelos J et al. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Ther 2002; 9: 127–134.

    Article  CAS  PubMed  Google Scholar 

  34. Horn T, Christoffersen P, Henriksen JH . Alcoholic liver injury: defenestration in noncirrhotic livers – a scanning electron microscopic study. Hepatology 1987; 7: 77–82.

    Article  CAS  PubMed  Google Scholar 

  35. Steffan AM et al. Mouse hepatitis virus type 3 infection provokes a decrease in the number of sinusoidal endothelial cell fenestrae both in vivo and in vitro. Hepatology 1995; 22: 395–401.

    CAS  PubMed  Google Scholar 

  36. Le Couteur DG, Fraser R, Cogger VC, McLean AJ . Hepatic pseudocapillarisation and atherosclerosis in ageing. Lancet 2002; 359: 1612–1615.

    Article  PubMed  Google Scholar 

  37. Cogger VC et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp Gerontol 2003; 38: 1101–1107.

    Article  PubMed  Google Scholar 

  38. McLean AJ et al. Age-related pseudocapillarization of the human liver. J Pathol 2003; 200: 112–117.

    Article  PubMed  Google Scholar 

  39. Kingston RL, Olson NH, Vogt VM . The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy. J Struct Biol 2001; 136: 67–80.

    Article  CAS  PubMed  Google Scholar 

  40. Yeager M et al. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci USA 1998; 95: 7299–7304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilk T et al. Organization of immature human immunodeficiency virus type 1. J Virol 2001; 75: 759–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Groot-Wassink T, Lemoine NR, Vassaux G . Cellular characterization of the tropism of recombinant adenovirus for the adrenal glands. Eur J Clin Invest 2003; 33: 794–798.

    Article  CAS  PubMed  Google Scholar 

  43. Braet F, Wisse E . Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Geest BR, Van Linthout SA, Collen D . Humoral immune response in mice against a circulating antigen induced by adenoviral transfer is strictly dependent on expression in antigen-presenting cells. Blood 2003; 101: 2551–2556.

    Article  CAS  PubMed  Google Scholar 

  45. Mingozzi F et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 2003; 111: 1347–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Geest B et al. Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum Gene Ther 2000; 11: 101–112.

    Article  CAS  PubMed  Google Scholar 

  47. De Geest B, Zhao Z, Collen D, Holvoet P . Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E-deficient mice. Circulation 1997; 96: 4349–4356.

    Article  CAS  PubMed  Google Scholar 

  48. Lusky M et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 1998; 72: 2022–2032.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Geest B, Van Linthout S, Collen D . Sustained expression of human apo A-I following adenoviral gene transfer in mice. Gene Ther 2001; 8: 121–127.

    Article  CAS  PubMed  Google Scholar 

  50. Wisse E . An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31: 125–150.

    Article  CAS  PubMed  Google Scholar 

  51. Wisse E . An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 1972; 38: 528–562.

    Article  CAS  PubMed  Google Scholar 

  52. Braet F et al. Assessment of a method of isolation, purification, and cultivation of rat liver sinusoidal endothelial cells. Lab Invest 1994; 70: 944–952.

    CAS  PubMed  Google Scholar 

  53. Wisse E, De Zanger RB, Jacobs R, McCuskey RS . Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc 1983: 1441–1452.

  54. Seglen PO . Preparation of isolated rat liver cells. Methods Cell Biol 1976; 13: 29–83.

    Article  CAS  PubMed  Google Scholar 

  55. Nagelkerke JF, Barto KP, van Berkel TJ . In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem 1983; 258: 12221–12227.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant G.0212.03 of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Joke Lievens is a Research Assistant of the Instituut voor Wetenschappelijk en Technisch Onderzoek-Vlaanderen. Bart De Geest is a Postdoctoral Fellow of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. We thank J Hendrix, C Seynaeve and M Baekeland for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lievens, J., Snoeys, J., Vekemans, K. et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther 11, 1523–1531 (2004). https://doi.org/10.1038/sj.gt.3302326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302326

Keywords

This article is cited by

Search

Quick links