Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Muscle stem cells can act as antigen-presenting cells: implication for gene therapy

Abstract

Research has shown that the use of a muscle-specific promoter can reduce immune response and improve gene transfer to muscle fibers. We investigated the efficiency of direct and ex vivo gene transfer to the skeletal muscles of 6- to 8-week-old mdx mice by using two adenoviral vectors: adenovirus (AD) encoding the luciferase gene under the cytomegalovirus (CMV) promoter (ADCMV) and AD encoding the same gene under the muscle creatine kinase (MCK) promoter (ADMCK). Direct intramuscular injection of ADMCK triggered a lower immune response that enabled more efficient delivery and more persistent expression of the transgene than did ADCMV injection. Similarly, ex vivo gene transfer using ADCMV-transduced muscle-derived stem cells (MDSCs) induced a stronger immune response and led to shorter transgene expression than did ex vivo gene transfer using ADMCK-transduced MDSCs. This immune response was due to the release of the antigen after MDSC death or to the ADCMV-transduced MDSCs acting as antigen-presenting cells (APCs) by expressing the transgene and rapidly initiating an immune response against subsequent viral inoculation. The use of a muscle-specific promoter that restricts transgene expression to differentiated muscle cells could prevent MDSCs from becoming APCs, and thereby could improve the efficiency of ex vivo gene transfer to skeletal muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Liu F, Huang L . Development of non-viral vectors for systemic gene delivery. J Control Rel 2002; 78: 259–266.

    Article  CAS  Google Scholar 

  2. Espinos E, Liu JH, Bader CR, Bernheim L . Efficient non-viral DNA-mediated gene transfer to human primary myoblasts using electroporation. Neuromuscul Disord 2001; 11: 341–349.

    Article  CAS  Google Scholar 

  3. Chapdelaine P et al. Functional EGFP–dystrophin fusion proteins for gene therapy vector development. Protein Eng 2000; 13: 611–615.

    Article  CAS  Google Scholar 

  4. Cao B, Mytinger JR, Huard J . Adenovirus mediated gene transfer to skeletal muscle. Microsc Res Technol 2002; 58: 45–51.

    Article  CAS  Google Scholar 

  5. Cao B et al. The role of receptors in the maturation-dependent adenoviral transduction of myofibers. Gene Therapy 2001; 8: 627–637.

    Article  CAS  Google Scholar 

  6. Bouri K et al. Polylysine modification of adenoviral fiber protein enhances muscle cell transduction. Hum Gene Ther 1999; 10: 1633–1640.

    Article  CAS  Google Scholar 

  7. Acsadi G et al. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Hum Gene Ther 1996; 7: 129–140.

    Article  CAS  Google Scholar 

  8. Takeda S, Miyagoe-Suzuki Y . Gene therapy for muscular dystrophies: current status and future prospects. Bio Drugs 2001; 15: 635–644.

    CAS  Google Scholar 

  9. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93: 14082–14087.

    Article  CAS  Google Scholar 

  10. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.

    Article  CAS  Google Scholar 

  11. Watchko J et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 2002; 13: 1451–1460.

    Article  CAS  Google Scholar 

  12. Fisher KJ et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3: 306–312.

    Article  CAS  Google Scholar 

  13. Larochelle N et al. Efficient muscle-specific transgene expression after adenovirus-mediated gene transfer in mice using a 1.35 kb muscle creatine kinase promoter/enhancer. Gene Therapy 1997; 4: 465–472.

    Article  CAS  Google Scholar 

  14. Hartigan-O'Connor D et al. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 2001; 4: 525–533.

    Article  CAS  Google Scholar 

  15. Hauser MA et al. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol Ther 2000; 2: 16–25.

    Article  CAS  Google Scholar 

  16. Ishii A et al. Effective adenovirus-mediated gene expression in adult murine skeletal muscle. Muscle Nerve 1999; 22: 592–599.

    Article  CAS  Google Scholar 

  17. Spitz F et al. Fiber-type specific and position-dependent expression of a transgene in limb muscles. Differentiation 2002; 70: 457–467.

    Article  CAS  Google Scholar 

  18. Roscilli G et al. Long-term and tight control of gene expression in mouse skeletal muscle by a new hybrid human transcription factor. Mol Ther 2002; 6: 653–663.

    Article  CAS  Google Scholar 

  19. Frauli M et al. Adenoviral-mediated skeletal muscle transcriptional targeting using chimeric tissue-specific promoters. Med Sci Monit 2003; 9: BR78–84.

    CAS  PubMed  Google Scholar 

  20. Grill MA et al. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice. Transgenic Res 2003; 12: 33–43.

    Article  CAS  Google Scholar 

  21. Weeratna RD et al. Designing gene therapy vectors: avoiding immune responses by using tissue-specific promoters. Gene Therapy 2001; 8: 1872–1878.

    Article  CAS  Google Scholar 

  22. Larochelle N et al. The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in skeletal muscles of mdx mice. Biochem Biophys Res Commun 2002; 292: 626–631.

    Article  CAS  Google Scholar 

  23. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaynes JB et al. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol Cell Biol 1986; 6: 2855–2864.

    Article  CAS  Google Scholar 

  25. Welle S, Bhatt K, Thornton CA . Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res 1999; 9: 506–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chamberlain JS, Jaynes JB, Hauschka SD . Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol Cell Biol 1985; 5: 484–492.

    Article  CAS  Google Scholar 

  27. Qu Z et al. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998; 142: 1257–1267.

    Article  CAS  Google Scholar 

  28. Campeau P et al. Transfection of large plasmids in primary human myoblasts. Gene Therapy 2001; 8: 1387–1394.

    Article  CAS  Google Scholar 

  29. Ozawa CR, Springer ML, Blau HM . A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40: 295–317.

    Article  CAS  Google Scholar 

  30. Moisset PA et al. Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem Biophys Res Commun 1998; 247: 94–99.

    Article  CAS  Google Scholar 

  31. Floyd Jr SS et al. Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles. Gene Therapy 1998; 5: 19–30.

    Article  CAS  Google Scholar 

  32. Rando TA, Blau HM . Methods for myoblast transplantation. Methods Cell Biol 1997; 52: 261–272.

    Article  CAS  Google Scholar 

  33. Skuk D et al. Dynamics of the early immune cellular reactions after myogenic cell transplantation. Cell Transplant 2002; 11: 671–681.

    Article  Google Scholar 

  34. Skuk D, Goulet M, Roy B, Tremblay JP . Myoblast transplantation in whole muscle of nonhuman primates. J Neuropathol Exp Neurol 2000; 59: 197–206.

    Article  CAS  Google Scholar 

  35. Skuk D, Goulet M, Roy B, Tremblay JP . Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol 2002; 175: 112–126.

    Article  CAS  Google Scholar 

  36. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA . Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144: 1113–1122.

    Article  CAS  Google Scholar 

  37. Qu Z, Huard J . Matching host muscle and donor myoblasts for myosin heavy chain improves myoblast transfer therapy. Gene Therapy 2000; 7: 428–437.

    Article  CAS  Google Scholar 

  38. Gussoni E, Blau HM, Kunkel LM . The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 1997; 3: 970–977.

    Article  CAS  Google Scholar 

  39. Miller JB, Schaefer L, Dominov JA . Seeking muscle stem cells. Curr Top Dev Biol 1999; 43: 191–219.

    Article  CAS  Google Scholar 

  40. Gussoni E et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401: 390–394.

    CAS  Google Scholar 

  41. Partridge TA . Stem cell route to neuromuscular therapies. Muscle Nerve 2003; 27: 133–141.

    Article  Google Scholar 

  42. Jankowski RJ, Deasy BM, Huard J . Muscle-derived stem cells. Gene Therapy 2002; 9: 642–647.

    Article  CAS  Google Scholar 

  43. Qu-Petersen Z et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002; 157: 851–864.

    Article  CAS  Google Scholar 

  44. Lee JY et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 2000; 150: 1085–1100.

    Article  CAS  Google Scholar 

  45. Daro E et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165: 49–58.

    Article  CAS  Google Scholar 

  46. Pimorady-Esfahani A, Grounds MD, McMenamin PG . Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle Nerve 1997; 20: 158–166.

    Article  CAS  Google Scholar 

  47. Cao B et al. Muscle stem cells differentiate into haematopoietic line-ages but retain myogenic potential. Nat Cell Biol 2003; 5: 640–646.

    Article  CAS  Google Scholar 

  48. Goebels N, Michaelis D, Wekerle H, Hohlfeld R . Human myo-blasts as antigen-presenting cells. J Immunol 1992; 149: 661–667.

    CAS  PubMed  Google Scholar 

  49. Garlepp MJ et al. Antigen processing and presentation by a murine myoblast cell line. Clin Exp Immunol 1995; 102: 614–619.

    Article  CAS  Google Scholar 

  50. Curnow J, Corlett L, Willcox N, Vincent A . Presentation by myoblasts of an epitope from endogenous acetylcholine receptor indicates a potential role in the spreading of the immune response. J Neuroimmunol 2001; 115: 127–134.

    Article  CAS  Google Scholar 

  51. Dalakas MC, Hohlfeld R . Polymyositis and dermatomyositis. Lancet 2003; 362: 971–982.

    Article  CAS  Google Scholar 

  52. Johnson JE, Wold BJ, Hauschka SD . Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 1989; 9: 3393–3399.

    Article  CAS  Google Scholar 

  53. Chinnadurai G, Chinnadurai S, Brusca J . Physical mapping of a large-plaque mutation of adenovirus type 2. J Virol 1979; 32: 623–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bruder JT, Jie T, McVey DL, Kovesdi I . Expression of gp19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver. J Virol 1997; 71: 7623–7628.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Muscular Dystrophy Association (USA) and the National Institutes of Health (NIH P01 AR 45925-01). The Growth and Development Laboratory is also supported by the Henry J Mankin Endowed Chair at the University of Pittsburgh and the William F and Jean W Donaldson Chair at Children's Hospital of Pittsburgh. We thank James Cummins, Marcelle Pellerin, Jessica Tebbets, and Arvydas Usas for their technical contributions. We also thank Dr Nick Giannoukakis (Division of Immunogenetics, Children's Hospital of Pittsburgh) for technical help and Ryan Sauder for excellent editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, B., Bruder, J., Kovesdi, I. et al. Muscle stem cells can act as antigen-presenting cells: implication for gene therapy. Gene Ther 11, 1321–1330 (2004). https://doi.org/10.1038/sj.gt.3302293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302293

Keywords

This article is cited by

Search

Quick links