Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeting virus entry and membrane fusion through specific peptide/MHC complexes using a high-affinity T-cell receptor

Abstract

The T-cell receptor (TCR) determines the specificity of T-cell recognition by binding to peptide fragments of intracellular proteins presented at the cell surface in association with molecules of the major histocompatibility complex (MHC). Engagement of the TCR by its cognate peptide/MHC ligand, with appropriate co-stimulatory signals, leads to activation of T-cell effector functions. Here we show that the attachment proteins of attenuated measles viruses, engineered to display a high-affinity single-chain TCR (scTCR), can recognize and bind to specific peptide–MHC complexes and thereby mediate targeted virus-cell entry and cell-to-cell fusion. Using the 2C TCR and its peptide/MHC ligand (SIYRYYGL/mouse Kb), we show that a scTCR grafted onto the measles virus H protein confers new specificity to virus entry and cell fusion. The efficiency of TCR-mediated virus entry was dependent on the number of peptide/MHC complexes expressed on the target cells, increasing progressively above densities higher than 2500 complexes per cell. This work introduces a new paradigm for targeting virus entry and membrane fusion by extending the repertoire of targets to specific peptide–MHC ligands and offering a novel quantitative readout for the cellular expression of peptide–MHC complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rudolph MG, Wilson IA . The specificity of TCR/pMHC interaction. Curr Opin Immunol 2002; 14: 52–65.

    Article  CAS  Google Scholar 

  2. Antoniou AN, Powis SJ, Elliott T . Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 2003; 15: 75–81.

    Article  CAS  Google Scholar 

  3. Germain RN, Stefanova I . The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 1999; 17: 467–522.

    Article  CAS  Google Scholar 

  4. Germain RN . The T cell receptor for antigen: signaling and ligand discrimination. J Biol Chem 2001; 276: 35223–35226.

    Article  CAS  Google Scholar 

  5. Santana MA, Rosenstein Y . What it takes to become an effector T cell: the process, the cells involved, and the mechanisms. J Cell Physiol 2003; 195: 392–401.

    Article  CAS  Google Scholar 

  6. Sadelain M, Riviere I, Brentjens R . Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3: 35–45.

    Article  CAS  Google Scholar 

  7. Denkberg G et al. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J Immunol 2003; 171: 2197–2207.

    Article  CAS  Google Scholar 

  8. Schumacher TN . T-cell-receptor gene therapy. Nat Rev Immunol 2002; 2: 512–519.

    Article  CAS  Google Scholar 

  9. Schlueter CJ, Schodin BA, Tetin SY, Kranz DM . Specificity and binding properties of a single-chain T cell receptor. J Mol Biol 1996; 256: 859–869.

    Article  CAS  Google Scholar 

  10. Chen J, Eisen HN, Kranz DM . A model T-cell receptor system for studying memory T-cell development. Microbes Infect 2003; 5: 233–240.

    Article  CAS  Google Scholar 

  11. Dorig RE, Marcil A, Chopra A, Richardson CD . The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993; 75: 295–305.

    Article  CAS  Google Scholar 

  12. Tatsuo H, Ono N, Tanaka K, Yanagi Y . SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000; 406: 893–897.

    Article  CAS  Google Scholar 

  13. Grote D et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97: 3746–3754.

    Article  CAS  Google Scholar 

  14. Peng KW et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001; 98: 2002–2007.

    Article  CAS  Google Scholar 

  15. Peng KW et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62: 4656–4662.

    CAS  PubMed  Google Scholar 

  16. Peng KW et al. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8: 527–531.

    Article  CAS  Google Scholar 

  17. Schneider U et al. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 2000; 74: 9928–9936.

    Article  CAS  Google Scholar 

  18. Peng KW et al. Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 2003; 101: 2557–2562.

    Article  CAS  Google Scholar 

  19. Hammond AL et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol 2001; 75: 2087–2096.

    Article  CAS  Google Scholar 

  20. Bucheit AD et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003; 7: 62–72.

    Article  CAS  Google Scholar 

  21. Holler PD, Chlewicki LK, Kranz DM . TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 2003; 4: 55–62.

    Article  CAS  Google Scholar 

  22. Holler PD, Kranz DM . Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 2003; 18: 255–264.

    Article  CAS  Google Scholar 

  23. Garcia KC et al. Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands: affinity measurements and crystallization. Proc Natl Acad Sci USA 1997; 94: 13838–13843.

    Article  CAS  Google Scholar 

  24. Sykulev Y et al. Peptide antagonism and T cell receptor interactions with peptide–MHC complexes. Immunity 1998; 9: 475–483.

    Article  CAS  Google Scholar 

  25. Buchholz CJ et al. In vivo selection of protease cleavage sites from retrovirus display libraries. Nat Biotechnol 1998; 16: 951–954.

    Article  CAS  Google Scholar 

  26. Firsching R et al. Measles virus spread by cell–cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. J Virol 1999; 73: 5265–5273.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reay PA et al. Determination of the relationship between T cell responsiveness and the number of MHC–peptide complexes using specific monoclonal antibodies. J Immunol 2000; 164: 5626–5634.

    Article  CAS  Google Scholar 

  28. Kageyama S, Tsomides TJ, Sykulev Y, Eisen HN . Variations in the number of peptide–MHC class I complexes required to activate cytotoxic T cell responses. J Immunol 1995; 154: 567–576.

    CAS  Google Scholar 

  29. Christinck ER, Luscher MA, Barber BH, Williams DB . Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 1991; 352: 67–70.

    Article  CAS  Google Scholar 

  30. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM . Direct observation of ligand recognition by T cells. Nature 2002; 419: 845–849.

    Article  CAS  Google Scholar 

  31. Purbhoo MA et al. The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor zeta chain. J Biol Chem 2001; 276: 32786–32792.

    Article  CAS  Google Scholar 

  32. Lavillette D, Russell SJ, Cosset FL . Retargeting gene delivery using surface-engineered retroviral vector particles. Curr Opin Biotechnol 2001; 12: 461–466.

    Article  CAS  Google Scholar 

  33. Hatziioannou T et al. Retroviral display of functional binding domains fused to the amino terminus of influenza hemagglutinin. Hum Gene Ther 1999; 10: 1533–1544.

    Article  CAS  Google Scholar 

  34. Ohno K et al. Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 1997; 15: 763–767.

    Article  CAS  Google Scholar 

  35. Cho BK et al. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 2000; 12: 263–372.

    Article  CAS  Google Scholar 

  36. Duprex WP et al. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 1999; 73: 9568–9575.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Radecke F et al. Rescue of measles viruses from cloned DNA. EMBO J 1995; 14: 5773–5784.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bryan Cho and Herman Eisen for providing the vector used for endogenous expression of SIYR peptide. This work is supported by the Mayo Foundation, Harold W Siebens Foundation, and George W Eisenberg Foundation (KWP, SJR), and the NIH GM55767 (DMK).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, KW., Holler, P., Orr, B. et al. Targeting virus entry and membrane fusion through specific peptide/MHC complexes using a high-affinity T-cell receptor. Gene Ther 11, 1234–1239 (2004). https://doi.org/10.1038/sj.gt.3302286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302286

Keywords

This article is cited by

Search

Quick links