Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intravenous administration of an AAV-2 vector for the expression of factor IX in mice and a dog model of hemophilia B

Abstract

Previous experiments have demonstrated the stable expression of factor IX (FIX) protein in mice and canine models of hemophilia B following portal vein gene transfer with a recombinant adeno-associated virus (rAAV) vector encoding FIX. Here, we present the results of studies that further optimized the rAAV vector transgene cassette used to express FIX and explored the use of the less-invasive intravenous (i.v.) route of vector administration for the treatment of hemophilia B. First, a liver-specific promoter was evaluated in conjunction with cis-acting regulatory elements in mice. Constructs that included both the β-globin intron and the woodchuck hepatitis virus post-transcriptional regulatory element resulted in the highest level of FIX expression in vivo. Using this optimized vector, we demonstrate that i.v. injection was feasible for hepatic gene transfer in mice, achieving 70–80% of portal vein expression levels of FIX. In further studies using the Chapel Hill strain of hemophilia B dogs, we demonstrate for the first time FIX expression and partial correction of the bleeding disorder following i.v. administration of an AAV vector.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Herzog RW et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Snyder RO et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–276.

    Article  CAS  PubMed  Google Scholar 

  3. Snyder RO et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  4. Chao H et al. Persistent expression of canine factor IX in hemophilia B canines. Gene Therapy 1999; 6: 1695–1704.

    Article  CAS  PubMed  Google Scholar 

  5. Wang L et al. Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA 1999; 96: 3906–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang L et al. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther 2000; 1: 154–158.

    Article  CAS  PubMed  Google Scholar 

  7. Chao H et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 2: 619–623.

    Article  CAS  PubMed  Google Scholar 

  8. Nathwani AC et al. Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 2002; 100: 1662–1669.

    Article  CAS  PubMed  Google Scholar 

  9. Kay MA et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  10. Ge Y, Powell S, Van Roey M, McArthur JG . Factors influencing the development of an anti-factor IX (FIX) immune response following administration of adeno-associated virus-FIX. Blood 2001; 97: 3733–3737.

    Article  CAS  PubMed  Google Scholar 

  11. Nathwani AC et al. Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA. Blood 2001; 97: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  12. Herzog RW et al. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther 2001; 4: 192–200.

    Article  CAS  PubMed  Google Scholar 

  13. Kay MA et al. A proposed rAAV-liver-directed clinical trial for hemophilia B. Mol Ther 2001; 5: S33 (abstr. 85).

    Google Scholar 

  14. Nakai H, Iwaki Y, Kay MA, Couto LB . Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J Virol 1999; 73: 5438–5447.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mingozzi F et al. Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol 2002; 76: 10497–10502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brinster RL et al. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 1988; 85: 836–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmiter RD et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 1991; 88: 478–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi T, Huang M, Gorman C, Jaenisch R . A generic intron increases gene expression in transgenic mice. Mol Cell Biol 1991; 11: 3070–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez MH et al. Expression of coagulation factor IX in a haematopoietic cell line. Thromb Haemost 2002; 87: 366–373.

    Article  CAS  PubMed  Google Scholar 

  20. Miao CH et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1: 522–532.

    Article  CAS  PubMed  Google Scholar 

  21. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Loeb JE et al. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 1999; 10: 2295–2305.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Wimler KM, Carmichael GG . Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. EMBO J 1999; 18: 1642–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi EA, Hope TJ . The role of poly(A) tail stability in the ability of the woodchuck hepatitis virus posttranscriptional regulatory element to stimulate gene expression. Mol Ther 2002; 5: S142 (abstr. 439).

    Google Scholar 

  26. Ill CR et al. Optimization of the human factor VIII complementary DNA expression plasmid for gene therapy of hemophilia A. Blood Coagul Fibrinolysis 1997; 8 (Suppl 2): S23–S30.

    CAS  PubMed  Google Scholar 

  27. Hafenrichter DG et al. Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood 1994; 84: 3394–3404.

    CAS  PubMed  Google Scholar 

  28. Ponnazhagan S et al. Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene 1997; 190: 203–210.

    Article  CAS  PubMed  Google Scholar 

  29. Sanlioglu S et al. Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 2001; 1: 137–147.

    Article  CAS  PubMed  Google Scholar 

  30. Herzog RW et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    Article  CAS  PubMed  Google Scholar 

  31. Gao GP et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L et al. High level expression of canine factor IX in hemophilia B dogs after readministration of AAV2/5 vectors. Mol Ther 2002; 5: S83 (abstr. 250).

    Google Scholar 

  33. Snyder RO, Xiao X, Samulski RJ . Production of recombininant adeno-associated viral vectors. In: Dracapoli NC, Haines JL, Korf BR, Moir DT, Mortan CC, Seidman CE, Seidman JG, Smith DR (eds). Current Protocols in Human Genetics. John Wiley & Sons: New York, 1996.

    Google Scholar 

Download references

Acknowledgements

We thank Sandra Powell and Tammy Langer for technical assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, T., Koprivnikar, K., Tu, G. et al. Intravenous administration of an AAV-2 vector for the expression of factor IX in mice and a dog model of hemophilia B. Gene Ther 11, 204–213 (2004). https://doi.org/10.1038/sj.gt.3302142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302142

Keywords

This article is cited by

Search

Quick links