Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Functional expression of ATM gene carried by HSV amplicon vector in vitro and in vivo

Abstract

Ataxia-telangiectasia (AT) is a human autosomal recessive disease with a pleiotropic phenotype characterized by cerebellar degeneration, immunodeficiency, premature aging, cancer predisposition, and radiation sensitivity. The gene mutated in AT, ATM (for AT-mutated), had been cloned and found to have ionizing radiation and oxidative stress-inducible kinase activity. No treatment can stop the progression of the disease. In this study, the complete open-reading frame of ATM cDNA was cloned into a Herpes simplex virus type-1 (HSV-1) amplicon vector (pTO-ATM), and the transduction of cultured AT cells was demonstrated by immunohistochemistry and Western blot analysis. Functional gene expression was evaluated by cell colony-forming assays following exposure to oxidative stress. The survival of AT cells with ATM gene transduction was about 100% higher compared to nontransduced cells after t-butyl hydroperoxide treatments. Next, the normal ATM gene expression in different regions of the rat brain was studied. Immunohistochemistry staining demonstrated weak endogenous ATM protein expression in neurons of the caudate-putamen, with significantly higher levels of expression detected in neurons in other brain regions. Exogenous ATM gene expression from pTO-ATM after viral transduction in the caudate-putamen of the adult rat was examined. At 3 days after injection of the pTO-ATM viral vector, abundant positive ATM staining of the neurons was found at the injection sites, in comparison to the controls. These data demonstrate that the relatively large ATM cDNA can be transduced and expressed in vitro and in vivo from an HSV amplicon viral vector. These data provide initial evidence that the replacement of the ATM gene into the cells of AT patients might be possible some day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boder E . Ataxia-telangiectasia: an overview. Kroc Found Ser 1985; 19: 1–63.

    CAS  PubMed  Google Scholar 

  2. McKinnon PJ . Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum Genet 1987; 75: 197–208.

    Article  CAS  PubMed  Google Scholar 

  3. Sedgwick R, Boder E . Ataxia-telangiectasia. Elsevier: Amsterdam, 1991.

    Google Scholar 

  4. Vinters HV, Gatti RA, Rakic P . Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia. Kroc Found Ser 1985; 19: 233–255.

    CAS  PubMed  Google Scholar 

  5. Savitsky K et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase (see comments). Science 1995; 268: 1749–1753.

    Article  CAS  PubMed  Google Scholar 

  6. Savitsky K et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 1995; 4: 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  7. Watters D et al. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 1997; 14: 1911–1921.

    Article  CAS  PubMed  Google Scholar 

  8. Barlow C et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc Natl Acad Sci USA 2000; 97: 871–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson SP . Cancer predisposition. Ataxia-telangiectasia at the crossroads. Curr Biol 1995; 5: 1210–1212.

    Article  CAS  PubMed  Google Scholar 

  10. Lavin MF et al. Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem Sci 1995; 20: 382–383.

    Article  CAS  PubMed  Google Scholar 

  11. Lehmann AR, Carr AM . The ataxia-telangiectasia gene: a link between checkpoint controls, neurodegeneration and cancer. Trends Genet 1995; 11: 375–377.

    Article  CAS  PubMed  Google Scholar 

  12. Zakian VA . ATM-related genes: what do they tell us about functions of the human gene? Cell 1995; 82: 685–687.

    Article  CAS  PubMed  Google Scholar 

  13. Rotman G, Shiloh Y . ATM: from gene to function. Hum Mol Genet 1998; 7: 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor AM . What has the cloning of the ATM gene told us about ataxia telangiectasia? Int J Radiat Biol 1998; 73: 365–371.

    Article  CAS  PubMed  Google Scholar 

  15. Shiloh Y, Kastan MB . ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209–254.

    Article  CAS  PubMed  Google Scholar 

  16. Shiloh Y . ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans 2001; 29: 661–666.

    Article  CAS  PubMed  Google Scholar 

  17. Barzilai A, Rotman G, Shiloh Y . ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst) 2002; 1: 3–25.

    Article  CAS  Google Scholar 

  18. Chiocca EA et al. Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol 1990; 2: 739–746.

    CAS  PubMed  Google Scholar 

  19. During MJ, Naegele JR, O'Malley KL, Geller AI . Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase (see comments). Science 1994; 266: 1399–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bennett JJ et al. Antitumor efficacy of regional oncolytic viral therapy for peritoneally disseminated cancer. J Mol Med 2000; 78: 166–174.

    Article  CAS  PubMed  Google Scholar 

  21. Natsume A et al. Bcl-2 and GDNF delivered by HSV-mediated gene transfer act additively to protect dopaminergic neurons from 6-OHDA-induced degeneration. Exp Neurol 2001; 169: 231–238.

    Article  CAS  PubMed  Google Scholar 

  22. Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK . Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann N Y Acad Sci 2001; 939: 340–357.

    Article  CAS  PubMed  Google Scholar 

  23. Poliani PL et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001; 12: 905–920.

    Article  CAS  PubMed  Google Scholar 

  24. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  25. Rampling R et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  26. Papanastassiou V et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma: a proof of principle study. Gene Therapy 2002; 9: 398–406.

    Article  CAS  PubMed  Google Scholar 

  27. Spaete RR, Frenkel N . The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  28. Geller AI, Breakefield XO . A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 1988; 241: 1667–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geller AI, Freese A . Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase. Proc Natl Acad Sci USA 1990; 87: 1149–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwong AD, Frenkel N . The herpes simplex virus amplicon. IV. Efficient expression of a chimeric chicken ovalbumin gene amplified within defective virus genomes. Virology 1985; 142: 421–425.

    Article  CAS  PubMed  Google Scholar 

  31. Carew JF et al. Efficient gene transfer to human squamous cell carcinomas by the herpes simplex virus type 1 amplicon vector. Am J Surg 1998; 176: 404–408.

    Article  CAS  PubMed  Google Scholar 

  32. Levatte MA, Cassam AK, Dekaban GA, Weaver LC . Analysis of a multi-mutant herpes simplex virus type 1 for gene transfer into sympathetic preganglionic neurons and a comparison to adenovirus vectors. Neuroscience 1998; 86: 1321–1336.

    Article  CAS  PubMed  Google Scholar 

  33. Wang S et al. A novel herpes virus amplicon system for in vivo gene delivery. Gene Therapy 1997; 4: 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Vos J . A hybrid herpes virus infectious vector based on Epstein–Barr virus and Herpes Simplex Virus type 1 for gene transfer into human cells in vitro and in vivo. J Virol 1996; 70: 8422–8430.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamada M et al. Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci USA 1999; 96: 4078–4083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strathdee CA, McLeod MR . A modular set of helper-dependent herpes simplex virus expression vectors. Mol Ther 2000; 1: 479–485.

    Article  CAS  PubMed  Google Scholar 

  37. Simonato M, Manservigi R, Marconi P, Glorioso J . Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci 2000; 23: 183–190.

    Article  CAS  PubMed  Google Scholar 

  38. Agudo M et al. Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. Hum Gene Ther 2002; 13: 665–674.

    Article  CAS  PubMed  Google Scholar 

  39. Uziel T et al. Genomic organization of the ATM gene. Genomics 1996; 33: 317–320.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang N et al. Isolation of full-length ATM cDNA and correction of the ataxia-telangiectasia cellular phenotype. Proc Natl Acad Sci USA 1997; 94: 8021–8026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ziv Y et al. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene 1997; 15: 159–167.

    Article  CAS  PubMed  Google Scholar 

  42. Scott SP et al. Cloning and expression of the ataxia-telangiectasia gene in baculovirus. Biochem Biophys Res Commun 1998; 245: 144–148.

    Article  CAS  PubMed  Google Scholar 

  43. Ho DY, Mocarski ES, Sapolsky RM . Altering central nervous system physiology with a defective herpes simplex virus vector expressing the glucose transporter gene. Proc Natl Acad Sci USA 1993; 90: 3655–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D'Angelica M et al. In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Cancer Immunol Immunother 1999; 47: 265–271.

    Article  CAS  PubMed  Google Scholar 

  45. Marconi P et al. Replication-defective herpes simplex virus vectors for neurotrophic factor gene transfer in vitro and in vivo. Gene Therapy 1999; 6: 904–912.

    Article  CAS  PubMed  Google Scholar 

  46. Gatti RA, Vinters HV . Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser 1985; 19: 225–232.

    CAS  PubMed  Google Scholar 

  47. Lakin ND et al. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 1996; 13: 2707–2716.

    CAS  PubMed  Google Scholar 

  48. Soares HD, Morgan JI, McKinnon PJ . Atm expression patterns suggest a contribution from the peripheral nervous system to the phenotype of ataxia-telangiectasia. Neuroscience 1998; 86: 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  49. Oka A, Takashima S . Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci Lett 1998; 252: 195–198.

    Article  CAS  PubMed  Google Scholar 

  50. Johnson PA et al. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 1992; 66: 2952–2965.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabel BA, Vick A, Holt V . Neurotoxic reactions of CNS following gene transfer with defective herpes simplex virus (HSV-1) vector. NeuroReport 1995; 6: 2447–2449.

    Article  CAS  PubMed  Google Scholar 

  52. Glorioso JC et al. HSV as a gene transfer vector for the nervous system. Mol Biotechnol 1995; 4: 87–99.

    Article  CAS  PubMed  Google Scholar 

  53. Wu N, Watkins SC, Schaffer PA, DeLuca NA . Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J Virol 1996; 70: 6358–6369.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fink DJ, Glorioso JC . Engineering herpes simplex virus vectors for gene transfer to neurons. Nat Med 1997; 3: 357–359.

    Article  CAS  PubMed  Google Scholar 

  55. Samaniego LA, Wu N, DeLuca NA . The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997; 71: 4614–4625.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Krisky DM et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Therapy 1998; 5: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  57. Lilley CE et al. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 2001; 75: 4343–4356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burton EA, Bai Q, Goins WF, Glorioso JC . Replication-defective genomic herpes simplex vectors: design and production. Curr Opin Biotechnol 2002; 13: 424–428.

    Article  CAS  PubMed  Google Scholar 

  59. Fraefel C et al. Helper virus-free transfer of Herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stavropoulos TA, Strathdee CA . An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72: 7137–7143.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Saeki Y et al. Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  62. Logvinoff C, Epstein AL . A novel approach for herpes simplex virus type 1 amplicon vector production, using the Cre-loxP recombination system to remove helper virus. Hum Gene Ther 2001; 12: 161–167.

    Article  CAS  PubMed  Google Scholar 

  63. Olschowka JA et al. Helper-free HSV-1 amplicons elicit a markedly less robust innate immune response in the CNS. Mol Ther 2003; 7: 218–227.

    Article  CAS  PubMed  Google Scholar 

  64. Smith IL, Hardwicke MA, Sandri-Goldin RM . Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 1992; 186: 74–86.

    Article  CAS  PubMed  Google Scholar 

  65. McCarthy AM, McMahan L, Schaffer PA . Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J Virol 1989; 63: 18–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shackelford RE et al. The ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts. J Biol Chem 2001; 276: 21951–21959.

    Article  CAS  PubMed  Google Scholar 

  67. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: San Diego, CA, 1986.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr N Stow, Dr D Cortez, Dr RS Paules, and Dr Y Shiloh for the generous gifts of materials. We would like to thank Jian Wang, Jun Guo, and Mathew Lux for technical assistance. We also thank Dr Yosif Shiloh for his help with manuscript preparation. This study was partly supported by the AT Children's Project, FL, USA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Shackelford, R., Manuszak, R. et al. Functional expression of ATM gene carried by HSV amplicon vector in vitro and in vivo. Gene Ther 11, 25–33 (2004). https://doi.org/10.1038/sj.gt.3302140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302140

Keywords

This article is cited by

Search

Quick links