Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Molecular strategies for improving cytokine transgene expression in normal and malignant tissues

Abstract

The augmentation and optimization of specific targeted transgene expression systems are important strategies for clinical research into gene therapy and DNA vaccination, due to safety considerations. In this study, we introduced 3′ untranslated regions and transcriptional control modifications and direct tandem or combinational vector design strategies into a number of specific cytokine cDNA expression plasmids. The experiments were performed in parallel using both in vivo and in vitro transgene expression systems. In vivo studies were carried out using gene gun delivery of test vectors into mouse skin tissues. A combination of specific cell lines and fresh cell explants were used for in vitro and ex vivo transgene expression assay systems. The results from these comparative experiments demonstrated that a number of molecular biology manipulations can be readily adapted to define and significantly enhance the level or/and duration of transgene expression for a group of clinically relevant cytokine genes, with very similar effects for both in vivo and in vitro test systems. This cytokine transgene expression system may offer a favorable means for improving the efficiency of cytokine gene therapy and DNA vaccines in future clinical studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harvey BG et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002; 13: 15–63.

    Article  CAS  PubMed  Google Scholar 

  2. Crystal RG et al. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther 2002; 13: 65–100.

    Article  CAS  PubMed  Google Scholar 

  3. Burkholder JK, Decker J, Yang NS . Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J Immunol Methods 1993; 165: 149–156.

    Article  CAS  PubMed  Google Scholar 

  4. Chapman BS et al. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res 1991; 19: 3979–3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng L, Ziegelhoffer PR, Yang NS . In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci USA 1993; 90: 4455–4459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshikawa H et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001; 28: 29–35.

    CAS  PubMed  Google Scholar 

  7. Toda M, Martuza RL, Rabkin SD . Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Therapy 2001; 8: 332–339.

    Article  CAS  PubMed  Google Scholar 

  8. Morse MA . Technology evaluation: gene therapy (IL-2), Valentis Inc. Curr Opin Mol Ther 2000; 2: 448–452.

    CAS  PubMed  Google Scholar 

  9. Lim M, Simons JW . Emerging concepts in GM-CSF gene-transduced tumor vaccines for human prostate cancer. Curr Opin Mol Ther 1999; 1: 64–71.

    CAS  PubMed  Google Scholar 

  10. Barouch DH et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 2000; 290: 486–492.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg SA . Progress in human tumour immunology and immunotherapy. Nature 2001; 411: 380–384.

    Article  CAS  PubMed  Google Scholar 

  12. Rakhmilevich AL et al. Cytokine gene therapy of cancer using gene gun technology: superior anti-tumor activity of IL-12. Cancer Gene Ther 1998; 8: 1303–1311.

    Google Scholar 

  13. Rakhmilevich AL et al. Effective particle-mediated vaccination against mouse melanoma by coadministration of plasmid DNA encoding Gp100 and granulocyte–macrophage colony-stimulating factor. Clin Cancer Res 2001; 7: 952–961.

    CAS  PubMed  Google Scholar 

  14. Kruys V et al. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 1989; 245: 852–855.

    Article  CAS  PubMed  Google Scholar 

  15. Lagnado CA, Brown CY, Goodall GJ . AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 1994; 14: 7984–7995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaw G, Kamen R . A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–667.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson T, Treisman R . Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature 1988; 336: 396–399.

    Article  CAS  PubMed  Google Scholar 

  18. Malter JS . Identification of an AUUUA-specific messenger RNA binding protein. Science 1989; 246: 664–666.

    Article  CAS  PubMed  Google Scholar 

  19. Rajagopalan LE, Malter JS . Modulation of granulocyte–macrophage colony-stimulating factor mRNA stability in vitro by the adenosine-uridine binding factor. J Biol Chem 1994; 269: 23882–23888.

    CAS  PubMed  Google Scholar 

  20. Rajagopalan LE et al. Granulocyte–macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues. Blood 1995; 86: 2551–2558.

    CAS  PubMed  Google Scholar 

  21. Dean JL et al. The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 2001; 21: 721–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajagopalan LE, Malter JS . Turnover and translation of in vitro synthesized messenger RNAs in transfected, normal cells. J Biol Chem 1996; 271: 19871–19876.

    Article  CAS  PubMed  Google Scholar 

  23. Buzby JS, Brewer G, Nugent DJ . Developmental regulation of RNA transcript destabilization by A + U-rich elements is AUF1-dependent. J Biol Chem 1999; 274: 33973–33978.

    Article  CAS  PubMed  Google Scholar 

  24. Neininger A et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 2002; 277: 3065–3068.

    Article  CAS  PubMed  Google Scholar 

  25. Yamshchikov VF, Mishina M, Cominelli F . A possible role of IL-1ra 3′-untranslated region in modulation of protein production. Cytokine 2002; 17: 98–107.

    Article  CAS  PubMed  Google Scholar 

  26. Yang NS, Sun HW, Mccabe D . Developing particle-mediated gene-transfer technology for research into gene therapy of cancer. Mol Med Today 1996; 2: 476–481.

    Article  CAS  PubMed  Google Scholar 

  27. Pertmer TM et al. Gene gun-based nucleic acid immunization: elicitation of humoral and cytotoxic T lymphocyte responses following epidermal delivery of nanogram quantities of DNA. Vaccine 1995; 13: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  28. Kozak M . An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 1991; 115: 887–903.

    Article  CAS  PubMed  Google Scholar 

  29. Mahvi DM et al. Particle-mediated gene transfer of granulocyte–macrophage colony-stimulating factor cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum Gene Ther 1996; 7: 1535–1543.

    Article  CAS  PubMed  Google Scholar 

  30. Rakhmilevich AL et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA 1996; 93: 6291–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oshikawa K et al. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1 beta converting enzyme cDNA. Proc Natl Acad Sci USA 1999; 96: 13351–13356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oshikawa K et al. Interleukin 12 gene transfer into skin distant from the tumor site elicits antimetastatic effects equivalent to local gene transfer. Human Gene Ther 2001; 12: 149–160.

    Article  CAS  Google Scholar 

  33. Mizushima S, Nagata S . pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 1990; 18: 5322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang NS et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990; 87: 9568–9572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang NS, Sun WH . Gene gun and other non-viral approaches for cancer gene therapy. Nat Med 1995; 1: 481–483.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Institute of BioAgricultural Sciences, Academia Sinica. We thank Mr Joe Burkholder for excellent technical assistance and Dr. Yuan Lin for critical reading and comment regarding the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, NS., Wang, JH. & Turner, J. Molecular strategies for improving cytokine transgene expression in normal and malignant tissues. Gene Ther 11, 100–108 (2004). https://doi.org/10.1038/sj.gt.3302137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302137

Keywords

Search

Quick links