Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: adenoviral vectors

Abstract

In September 1999, the perceptions of the use of adenoviral (Ad) vectors for gene therapy were altered when a patient exposed via the hepatic artery to a high dose of adenoviral vector succumbed to the toxicity related to vector administration. Appropriately, concerns were raised about continued use of the Ad vector system and, importantly, there were increased efforts to more fully understand the toxicity. Today it is recognized that there is no ideal vector system, and that while Ad vectors are not suitable for all applications, the significant advantages over other vector systems including efficient transduction of a variety of cell types, both quiescent and dividing, make it optimal for certain applications. These include protocols where high levels of short-term expression are sufficient to provide a therapeutic benefit. Potential target applications include therapeutic angiogenesis, administration into immune-privileged sites such as the CNS, or treatments where the adjuvant effect of adenovirus can be of benefit such as cancer vaccines. Broader applicability of Ad vectors will require resolution of toxicity issues. This review will therefore focus on studies conducted over the last 2 years that have advanced our understanding of the toxicity associated with Ad vectors, studies that have employed methods to reduce toxicity and improvements in Ad vectors themselves that will reduce toxicity by one of several mechanisms. These mechanisms include retargeting vector to the tissue of interest, minimizing or eliminating viral gene expression that is thought to result in loss of transduced cells, or by methods that seek to reduce the vector dose required for therapeutic benefit. An area where there remains significant room for improvement is when readministration of vector is required because transgene expression has decreased to background levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Makinen K et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002; 6: 127–133.

    Article  CAS  PubMed  Google Scholar 

  2. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 2002; 13: 3–13.

  3. Zhang Y et al. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 2001; 3: 697–707.

    Article  CAS  PubMed  Google Scholar 

  4. Higginbotham JN, Seth P, Blaese RM, Ramsey WJ . The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 2002; 13: 129–141.

    Article  CAS  PubMed  Google Scholar 

  5. Borgland SL et al. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol 2000; 74: 3941–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cichon G et al. Complement activation by recombinant adenoviruses. Gene Therapy 2001; 8: 1794–1800.

    Article  CAS  PubMed  Google Scholar 

  7. Morelli AE et al. Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 2000; 74: 9617–9628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schnell MA et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3(Part 1): 708–722.

    Article  CAS  PubMed  Google Scholar 

  9. Morral N et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13: 143–154.

    Article  CAS  PubMed  Google Scholar 

  10. Raper SE et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13: 163–175.

    Article  CAS  PubMed  Google Scholar 

  11. Eggerman TL, Mondoro TH, Lozier JN, Vostal JG . Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation. Hum Gene Ther 2002; 13: 125–128.

    Article  CAS  PubMed  Google Scholar 

  12. Lozier JN et al. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 2002; 13: 113–124.

    Article  CAS  PubMed  Google Scholar 

  13. Crystal RG et al. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther 2002; 13: 65–100.

    Article  CAS  PubMed  Google Scholar 

  14. Harvey BG et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002; 13: 15–63.

    Article  CAS  PubMed  Google Scholar 

  15. Ben Gary H et al. Systemic interleukin-6 responses following administration of adenovirus gene transfer vectors to humans by different routes. Mol Ther 2002; 6: 287–297.

    Article  PubMed  Google Scholar 

  16. Kolb M et al. Budesonide enhances repeated gene transfer and expression in the lung with adenoviral vectors. Am J Respir Crit Care Med 2001; 164: 866–872.

    Article  CAS  PubMed  Google Scholar 

  17. Nemerow GR . Adenoviral vectors – new insights. Trends Microbiol 2000; 8: 391–394.

    Article  CAS  PubMed  Google Scholar 

  18. Wickham TJ . Ligand-directed targeting of genes to the site of disease. Nat Med 2003; 9: 135–139.

    Article  CAS  PubMed  Google Scholar 

  19. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenoviral vectors. Mol Ther 2000; 1(Part 1): 391–405.

    Article  CAS  PubMed  Google Scholar 

  20. Ostapchuk P, Hearing P . Pseudopackaging of adenovirus type 5 genomes into capsids containing the hexon proteins of adenovirus serotypes B, D, or E. J Virol 2001; 75: 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Havenga MJ et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 2002; 76: 4612–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su EJ et al. A genetically modified adenoviral vector exhibits enhanced gene transfer of human smooth muscle cells. J Vasc Res 2001; 38: 471–478.

    Article  CAS  PubMed  Google Scholar 

  23. Loser P et al. Ovine adenovirus vectors mediate efficient gene transfer to skeletal muscle. Gene Therapy 2000; 7: 1491–1498.

    Article  CAS  PubMed  Google Scholar 

  24. Magnusson MK, Hong SS, Boulanger P, Lindholm L . Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J Virol 2001; 75: 7280–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Beusechem VW et al. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Therapy 2000; 7: 1940–1946.

    Article  CAS  PubMed  Google Scholar 

  26. Barnett BG, Crews CJ, Douglas JT . Targeted adenoviral vectors. Biochim Biophys Acta 2002; 1575: 1–14.

    Article  CAS  PubMed  Google Scholar 

  27. Nicklin SA et al. Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001; 4: 534–542.

    Article  CAS  PubMed  Google Scholar 

  28. Xia H, Anderson B, Mao Q, Davidson BL . Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J Virol 2000; 74: 11359–11366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakker AC et al. A tropism-modified adenoviral vector increased the effectiveness of gene therapy for arthritis. Gene Therapy 2001; 8: 1785–1793.

    Article  CAS  PubMed  Google Scholar 

  30. Biermann V et al. Targeting of high-capacity adenoviral vectors. Hum Gene Ther 2001; 12: 1757–1769.

    Article  CAS  PubMed  Google Scholar 

  31. Levy RJ et al. Localized adenovirus gene delivery using antiviral IgG complexation. Gene Therapy 2001; 8: 659–667.

    Article  CAS  PubMed  Google Scholar 

  32. Israel BF et al. Enhancement of adenovirus vector entry into CD70-positive B-cell lines by using a bispecific CD70-adenovirus fiber antibody. J Virol 2001; 75: 5215–5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nettelbeck DM et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 2001; 3: 882–891.

    Article  CAS  PubMed  Google Scholar 

  34. Barnett BG, Tillman BW, Curiel DT, Douglas JT . Dual targeting of adenoviral vectors at the levels of transduction and transcription enhances the specificity of gene expression in cancer cells. Mol Ther 2002; 6: 377–385.

    Article  CAS  PubMed  Google Scholar 

  35. Hartigan-O'Connor D et al. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 2001; 4: 525–533.

    Article  CAS  PubMed  Google Scholar 

  36. Smith T et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus–adenovirus receptor. Mol Ther 2002; 5: 770–779.

    Article  CAS  PubMed  Google Scholar 

  37. Dechecchi MC et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Geest B et al. Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum Gene Ther 2000; 11: 101–112.

    Article  CAS  PubMed  Google Scholar 

  39. Gerdes CA, Castro MG, Lowenstein PR . Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol Ther 2000; 2: 330–338.

    Article  CAS  PubMed  Google Scholar 

  40. Ehrhardt A, Kay MA . A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood 2002; 99: 3923–3930.

    Article  CAS  PubMed  Google Scholar 

  41. Ding EY et al. Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alpha-glucosidase gene into glycogen storage disease type II knockout mice. Hum Gene Ther 2001; 12: 955–965.

    Article  CAS  PubMed  Google Scholar 

  42. Andrews JL et al. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther 2001; 3: 329–336.

    Article  CAS  PubMed  Google Scholar 

  43. Braithwaite AW, Russell IA . Induction of cell death by adenoviruses. Apoptosis 2001; 6: 359–370.

    Article  CAS  PubMed  Google Scholar 

  44. Tauber B, Dobner T . Molecular regulation and biological function of adenovirus early genes: the E4 ORFs. Gene 2001; 278: 1–23.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou H, Beaudet AL . A new vector system with inducible E2a cell line for production of higher titer and safer adenoviral vectors. Virology 2000; 275: 348–357.

    Article  CAS  PubMed  Google Scholar 

  46. Kochanek S, Schiedner G, Volpers C . High-capacity ‘gutless’ adenoviral vectors. Curr Opin Mol Ther 2001; 3: 454–463.

    CAS  PubMed  Google Scholar 

  47. Umana P et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat Biotechnol 2001; 19: 582–585.

    Article  CAS  PubMed  Google Scholar 

  48. Ng P et al. Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol Ther 2001; 3(Part 1): 809–815.

    Article  CAS  PubMed  Google Scholar 

  49. Reddy PS et al. Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector. Mol Ther 2002; 5: 63–73.

    Article  CAS  PubMed  Google Scholar 

  50. Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA . A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Therapy 2001; 8: 846–854.

    Article  CAS  PubMed  Google Scholar 

  51. Sakhuja K et al. Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther 2003; 14: 243–254.

    Article  CAS  PubMed  Google Scholar 

  52. Kim IH et al. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 2001; 98: 13282–13287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen P, Kovesdi I, Bruder JT . Effective repeat administration with adenovirus vectors to the muscle. Gene Therapy 2000; 7: 587–595.

    Article  CAS  PubMed  Google Scholar 

  54. Buller RE et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002; 9: 553–566.

    Article  CAS  PubMed  Google Scholar 

  55. Moffatt S, Hays J, HogenEsch H, Mittal SK . Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000; 272: 159–167.

    Article  CAS  PubMed  Google Scholar 

  56. Rahman A et al. Specific depletion of human anti-adenovirus antibodies facilitates transduction in an in vivo model for systemic gene therapy. Mol Ther 2001; 3(Part 1): 768–778.

    Article  CAS  PubMed  Google Scholar 

  57. Croyle MA, Chirmule N, Zhang Y, Wilson JM . ‘Stealth’ adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 2001; 75: 4792–4801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fisher KD et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Therapy 2001; 8: 341–348.

    Article  CAS  PubMed  Google Scholar 

  59. Yotnda P et al. Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 2002; 5: 233–241.

    Article  CAS  PubMed  Google Scholar 

  60. Ziller C, Stoeckel F, Boon L, Haegel-Kronenberger H . Transient blocking of both B7.1 (CD80) and B7.2 (CD86) in addition to CD40–CD40L interaction fully abrogates the immune response following systemic injection of adenovirus vector. Gene Therapy 2002; 9: 537–546.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang Z, Feingold E, Kochanek S, Clemens PR . Systemic delivery of a high-capacity adenoviral vector expressing mouse CTLA4Ig improves skeletal muscle gene therapy. Mol Ther 2002; 6: 369–376.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang ZL et al. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle. Mol Ther 2001; 3: 892–900.

    Article  CAS  PubMed  Google Scholar 

  63. Thummala NR et al. A non-immunogenic adenoviral vector, coexpressing CTLA4Ig and bilirubin-uridine-diphosphoglucuronateglucuronosyltransferase permits long-term, repeatable transgene expression in the Gunn rat model of Crigler–Najjar syndrome. Gene Therapy 2002; 9: 981–990.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

St George, J. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 10, 1135–1141 (2003). https://doi.org/10.1038/sj.gt.3302071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302071

Keywords

This article is cited by

Search

Quick links