Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The αvβ5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses

Abstract

Epithelial and endothelial cells expressing the primary Coxsackie virus B adenovirus (Ad) receptor (CAR) and integrin coreceptors are natural targets of human Ad infections. The fiber knob of species A, C, D, E and F Ad serotypes binds CAR by mimicking the CAR–homodimer interface, and the penton base containing arginine–glycine–aspartate (RGD) motifs binds with low affinity to αv integrins inducing cell activation. Here, we generated seven different genetically modified Ad vectors with RGD sequences inserted into the HI loop of fiber knob. All mutants bound and infected CAR and αv integrin-positive epithelial cells with equal efficiencies. However, the Ads containing two additional cysteines, both N and C terminals of the RGD sequence (RGD-4C), were uniquely capable of transducing CAR-less hematopoietic and nonhematopoietic human tumor cell lines and primary melanoma cells. Both binding and transduction of RGD-4C Ad were blocked by soluble RGD peptides. Flow cytometry of cell surface integrins and virus binding to CAR-less cells in the presence of function-blocking anti-integrin antibodies indicated that the αvβ5 integrin, but not αvβ3, αIIbβ3 or β1,α5 or α6-containing integrins served as a functional transduction receptor of the RGD-4C Ads. However, in cells with low levels of αvβ5 integrin, the function-blocking anti-αvβ5 antibodies were not effective, unlike soluble RGD peptides. Collectively, our data demonstrate that the αvβ5 integrin is a functional transduction receptor of RGD-4C Ads in the absence of CAR, and that additional RGD receptors are targets of these viruses. The RGD-4C vectors further extend the tropism of Ads towards potential human therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hackett NR, Crystal RG . Adenovirus vectors for gene therapy. In: Lasic D, Templeton NS (eds). Gene Therapy: Therapeutic Mechanisms and Strategies. Marcel-Dekker: New York, 2000, pp 17–40.

    Google Scholar 

  2. Kruyt FA, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 2002; 13: 485–495.

    Article  CAS  PubMed  Google Scholar 

  3. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  4. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  6. Greber UF . Signalling in viral entry. Cell Mol Life Sci 2002; 59: 608–626.

    Article  CAS  PubMed  Google Scholar 

  7. Varga MJ, Weibull C, Everitt E . Infectious entry pathway of adenovirus type 2. J Virol 1991; 65: 6061–6070.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang K, Huang S, Kapoor-Munshi A, Nemerow G . Adeno-virus internalization and infection require dynamin. J Virol 1998; 72: 3455–3458.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Meier O et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002; 158: 1119–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    Article  CAS  PubMed  Google Scholar 

  11. Davison E et al. Integrin alpha5beta1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol 1997; 71: 6204–6207.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davison E et al. Adenovirus type 5 uptake by lung adenocarcinoma cells in culture correlates with Ad5 fibre binding is mediated by alpha(v)beta1 integrin and can be modulated by changes in beta1 integrin function. J Gene Med 2001; 3: 550–559.

    Article  CAS  PubMed  Google Scholar 

  13. Li E et al. Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75: 5405–5409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grubb BR et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 1994; 371: 802–806.

    Article  CAS  PubMed  Google Scholar 

  15. Zabner J et al. Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J Clin Invest 1997; 100: 1144–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pickles RJ et al. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 1998; 72: 6014–6023.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Walters RW et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274: 10219–10226.

    Article  CAS  PubMed  Google Scholar 

  18. Chillon M et al. Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 1999; 73: 2537–2540.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Acsadi G et al. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet 1994; 3: 579–584.

    Article  CAS  PubMed  Google Scholar 

  20. Nalbantoglu J, Pari G, Karpati G, Holland PC . Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 1999; 10: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  21. Wickham TJ et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996; 70: 6831–6838.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Andiman WA, Miller G . Persistent infection with adenovirus types 5 and 6 in lymphoid cells from humans and woolly monkeys. J Infect Dis 1982; 145: 83–88.

    Article  CAS  PubMed  Google Scholar 

  23. Horvath J, Weber JM . Nonpermissivity of human peripheral blood lymphocytes to adenovirus type 2 infection. J Virol 1988; 62: 341–345.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Silver L, Anderson CW . Interaction of human adenovirus serotype 2 with human lymphoid cells. Virology 1988; 165: 377–387.

    Article  CAS  PubMed  Google Scholar 

  25. Rea D et al. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset. J Virol 1999; 73: 10245–10253.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998; 91: 392–398.

    CAS  PubMed  Google Scholar 

  27. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    CAS  PubMed  Google Scholar 

  28. Cantwell MJ, Sharma S, Friedmann T, Kipps TJ . Adenovirus vector infection of chronic lymphocytic leukemia B cells. Blood 1996; 88: 4676–4683.

    CAS  PubMed  Google Scholar 

  29. Chu Y, Sperber K, Mayer L, Hsu MT . Persistent infection of human adenovirus type 5 in human monocyte cell lines. Virology 1992; 188: 793–800.

    Article  CAS  PubMed  Google Scholar 

  30. Faucon N, Ogier G, Chardonnet Y . Changes in human adenovirus 5 propagated in Burkitt's lymphoma cells. J Natl Cancer Inst 1982; 69: 1215–1220.

    CAS  PubMed  Google Scholar 

  31. Turturro F, Seth P, Link Jr CJ . In vitro adenoviral vector p53-mediated transduction and killing correlates with expression of coxsackie-adenovirus receptor and alpha(nu)beta5 integrin in SUDHL-1 cells derived from anaplastic large-cell lymphoma. Clin Cancer Res 2000; 6: 185–192.

    CAS  PubMed  Google Scholar 

  32. Wattel E et al. Differential efficacy of adenoviral mediated gene transfer into cells from hematological cell lines and fresh hematological malignancies. Leukemia 1996; 10: 171–174.

    CAS  PubMed  Google Scholar 

  33. Hemmi S et al. The presence of HCAR (human coxsackievirus and adenovirus receptor) is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  35. Li D, Duan L, Freimuth P, O'Malley Jr BW . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 1999; 5: 4175–4181.

    CAS  PubMed  Google Scholar 

  36. Khuu H et al. Detection of coxsackie-adenovirus receptor (CAR) immunoreactivity in ovarian tumors of epithelial derivation. Appl Immunohistochem Mol Morphol 1999; 7: 266–270.

    Google Scholar 

  37. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenoviral vectors. Mol Ther 2000; 1: 391–405.

    Article  CAS  PubMed  Google Scholar 

  38. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koivunen E, Wang B, Ruoslahti E . Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 1994; 124: 373–380.

    Article  CAS  PubMed  Google Scholar 

  40. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dmitriev I et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vigne E et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73: 5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nemerow GR, Stewart PL . Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999; 63: 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Meier O, GU F . Adenovirus endocytosis. J Gene Med 2003 (in press).

  45. Ebbinghaus C et al. Functional and selective targeting of adenovirus to high-affinity fc gamma receptor I-positive cells by using a bispecific hybrid adapter. J Virol 2001; 75: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fallaux FJ et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    Article  CAS  PubMed  Google Scholar 

  47. Geertsen RC et al. Higher frequency of selective losses of HLA-A and -B allospecificities in metastasis than in primary melanoma lesions. J Invest Dermatol 1998; 111: 497–502.

    Article  CAS  PubMed  Google Scholar 

  48. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  49. Chinnadurai G, Chinnadurai S, Brusca J . Physical mapping of a large-plaque mutation of adenovirus type 2. J Virol 1979; 32: 623–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stow ND . Cloning of a DNA fragment from the left-hand terminus of the adenovirus type 2 genome and its use in site-directed mutagenesis. J Virol 1981; 37: 171–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  52. Trotman LC et al. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 2001; 3: 1092–1100.

    Article  CAS  PubMed  Google Scholar 

  53. Okada N et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun 2001; 282: 173–179.

    Article  CAS  PubMed  Google Scholar 

  54. Nestle FO, Banchereau J, Hart D . Dendritic cells: on the move from bench to bedside. Nat Med 2001; 7: 761–765.

    Article  CAS  PubMed  Google Scholar 

  55. Huang S et al. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol 1996; 70: 4502–4508.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Neering SJ et al. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 1996; 88: 1147–1155.

    CAS  PubMed  Google Scholar 

  57. Cripe TP et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res 2001; 61: 2953–2960.

    CAS  PubMed  Google Scholar 

  58. Suomalainen M et al. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule- mediated nuclear targeting of virus. EMBO J 2001; 20: 1310–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weinacker A et al. Role of the integrin alpha v beta 6 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. J Biol Chem 1994; 269: 6940–6948.

    CAS  PubMed  Google Scholar 

  60. Mitjans F et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci 1995; 108: 2825–2838.

    CAS  PubMed  Google Scholar 

  61. Pasqualini R, Bodorova J, Ye S, Hemler ME . A study of the structure, function and distribution of beta 5 integrins using novel anti-beta 5 monoclonal antibodies. J Cell Sci 1993; 105: 101–111.

    CAS  PubMed  Google Scholar 

  62. Wayner EA, Orlando RA, Cheresh DA . Integrins alpha v beta 3 and alpha v beta 5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J Cell Biol 1991; 113: 919–929.

    Article  CAS  PubMed  Google Scholar 

  63. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat Biotechnol 1996; 14: 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez R et al. Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Therapy 1999; 6: 314–320.

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez R et al. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells. Hum Gene Ther 1999; 10: 2709–2717.

    Article  CAS  PubMed  Google Scholar 

  66. Xia D, Henry LJ, Gerard RD, Deisenhofer J . Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 1994; 2: 1259–1270.

    Article  CAS  PubMed  Google Scholar 

  67. Roelvink PW et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  68. Bewley MC et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999; 286: 1579–1583.

    Article  CAS  PubMed  Google Scholar 

  69. Magnusson MK, Hong SS, Boulanger P, Lindholm L . Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J Virol 2001; 75: 7280–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Biermann V et al. Targeting of high-capacity adenoviral vectors. Hum Gene Ther 2001; 12: 1757–1769.

    Article  CAS  PubMed  Google Scholar 

  72. US Department of Health and Human Services, NIH, Committee RDA. Minutes of meeting, December 13 & 15, 2000. Hum Gene Ther 2001; 12: 1573–1575.

  73. Mizuguchi H et al. CAR- or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Therapy 2002; 9: 769–776.

    Article  CAS  PubMed  Google Scholar 

  74. Cheresh DA, Spiro RC . Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987; 262: 17703–17711.

    CAS  PubMed  Google Scholar 

  75. Akiyama SK, Yamada SS, Chen WT, Yamada KM . Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 1989; 109: 863–875.

    Article  CAS  PubMed  Google Scholar 

  76. Newman PJ, Allen RW, Kahn RA, Kunicki TJ . Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3. Blood 1985; 65: 227–232.

    CAS  PubMed  Google Scholar 

  77. Sonnenberg A et al. A complex of platelet glycoproteins Ic and IIa identified by a rat monoclonal antibody. J Biol Chem 1987; 262: 10376–10383.

    CAS  PubMed  Google Scholar 

  78. Sonnenberg A, Modderman PW, Hogervorst F . Laminin receptor on platelets is the integrin VLA-6. Nature 1988; 336: 487–489.

    Article  CAS  PubMed  Google Scholar 

  79. Pidard D, Montgomery RR, Kunicki TJ . Characterization of murine monoclonal antibodies specific for the human platelet glycoproteins. Blood 1982; 60: 203a.

    Google Scholar 

  80. Buchholz CJ et al. Mapping of the primary binding site of measles virus to its receptor CD46. J Biol Chem 1997; 272: 22072–22079.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Kanton Zürich and by a grant of the Krebsliga of the Kanton Zürich (to SH). UFG was supported by the Swiss National Science Foundation. We thank C Torres-de los Reyes and E Horvath for excellent technical assistance and F Ochsenbein for graphic designs.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, H., Maag, S., Tassis, A. et al. The αvβ5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Ther 10, 1643–1653 (2003). https://doi.org/10.1038/sj.gt.3302058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302058

Keywords

This article is cited by

Search

Quick links