Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Kinetics of cell death in T lymphocytes genetically modified with two novel suicide fusion genes

Abstract

Donor lymphocyte infusions (DLI) following allogeneic stem cell transplantation are known to mediate graft-versus-leukemia effect (GVL). A major side effect of these immunotherapies is the development of graft-versus-host diseases (GVHD). One promising approach to prevent GVHD is to genetically modify donor T cells with a suicide mechanism that can be induced in the case of GVHD. Here we report on a retroviral vector containing the death effector domain (DED) of the human Fas-associated protein with death domain (FADD). The DED was fused to two copies of an FKBP506-binding protein and a truncated version of the human low-affinity receptor for nerve growth factor (LNGFR). Activation of the death signal pathway can be triggered upon the addition of chemical inducers of dimerization. This construct was functionally compared to an optimized HSV-TK vector in which a hypersensitive mutant of the herpes simplex virus thymidine kinase gene (TK39) was fused to a cytoplasmic truncated version of the cell surface antigen CD34. A direct comparison between both vectors in primary T lymphocytes showed that the number of T cells transduced with vectors containing the DED was significantly reduced within 24 h of drug administration whereas ganciclovir treatment of TK39-transduced T cells showed a delay in cell death of approximately 3–4 days. Our results indicate that constructs containing the DED may prove to be the most efficient mechanism to quickly eliminate alloreactive T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kernan NA et al. Analysis of 462 transplantations from unrelated donors facilitated by the national marrow donor program. N Engl J Med 1993; 328: 593–602.

    Article  CAS  PubMed  Google Scholar 

  2. Marks D et al. Allogeneic bone marrow transplantation for chronic myeloid leukemia using sibling and volunteer unrelated donors. A comparison of complications in the first two years. Ann Intern Med 1993; 119: 207.

    Article  CAS  PubMed  Google Scholar 

  3. Champli R . T cell depletion for allogeneic bone marrow transplantation: impact on graft-versus-host disease, engraftment, and graft-versus-leukemia. J Hematother 1993; 2: 27.

    Article  Google Scholar 

  4. Murphy WJ, Bazar BR . New strategies for preventing graft-versus-host disease. Curr Opin Immunol 1999; 11: 509–515.

    Article  CAS  PubMed  Google Scholar 

  5. Kolb HJ et al. Graft versus leukemia effect of donor lymphocyte transfusions in marrow grafted patients: European group for blood and marrow transplantat working party chronic leukemia. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  6. Bonini C et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft versus leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  7. Bordignon C et al. Clinical protocol: transfer of the HSV-TK gene into donor peripheral blood lymphocytes for in vivo modulation of donor antitumor immunity after allogeneic bone marrow transplantation. Hum Gene Ther 1995; 6: 813–819.

    Article  CAS  PubMed  Google Scholar 

  8. Tiberghien P et al. Use of donor T lymphocytes expressing herpes-simplex thymidine kinase in allogeneic bone marrow transplantation a phase I–II study. Hum Gene Ther 1997; 8: 615–624.

    Article  CAS  PubMed  Google Scholar 

  9. Link C-J et al. Adoptive immunotherapy for leukemia: donor lymphocytes transduced with the herpes simplex thymidine kinase gene for remission induction. Hum Gene Ther 1998; 9: 115–134.

    Article  CAS  PubMed  Google Scholar 

  10. Tiberghien P et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach after bone marrow transplantation? Blood 1994; 84: 1333–1341.

    CAS  PubMed  Google Scholar 

  11. Moolten FL, Wells JM . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1996; 46: 5276–5281.

    Google Scholar 

  12. Reardon JE . Herpes simplex virus type 1 and human DNA polymerase interactions with 2′-deoxy-guanosine 5′-triphosphate analogous: kinetics of incorporation into DNA and induction of inhibition. J Biol Chem 1989; 264: 19039–19044.

    CAS  PubMed  Google Scholar 

  13. Garin MI et al. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 2001; 97: 122–129.

    Article  CAS  PubMed  Google Scholar 

  14. Thomis DC et al. A fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 2001; 97: 1249–1257.

    Article  CAS  PubMed  Google Scholar 

  15. Black ME, Karkus MS, Sabo P . Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res 2001; 61: 3022–3026.

    CAS  PubMed  Google Scholar 

  16. Black ME, Newcomb TG, Wilson H-MP, Loeb LA . Creation of drug specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 1996; 93: 3525–3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  18. Fehse B et al. CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther 2000; 1: 448–456.

    Article  CAS  PubMed  Google Scholar 

  19. Bordignon C et al. Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum Gene Ther 1995; 6: 813–819.

    Article  CAS  PubMed  Google Scholar 

  20. Clackson T et al. Redesigning a FKBP–ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998; 95: 10437–1044.

    Article  CAS  Google Scholar 

  21. Baum C et al. Novel retroviral vectors for efficient expression of the multidrug-resistance (mdr-1) gene in early hematopoietic cells. J Virol 1995; 69: 7541–7547.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stitz J et al. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology 2000; 273: 16–20.

    Article  CAS  PubMed  Google Scholar 

  24. Tiberghien P et al. Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell depleted allogeneic marrow graft. Blood 2001; 97: 63–72.

    Article  CAS  PubMed  Google Scholar 

  25. Sauce D et al. Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein–Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood 2002; 99: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  26. Verzeletti S et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum Gene Ther 1998; 281: 1305–1308.

    Google Scholar 

  27. Riddell SR et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med 1996; 2: 216–223.

    Article  CAS  PubMed  Google Scholar 

  28. Qasim W et al. T cell transduction and suicide with an enhanced mutant thymidine kinase. Gene Therapy 2002; 9: 824–827.

    Article  CAS  PubMed  Google Scholar 

  29. Golumbek PT et al. Herpes simplex-1 virus thymidine kinase gene is unable to completely elimintae live, nonimmunogenic tumor cell vaccines. J Immunother 1992; 12: 224–230.

    Article  CAS  PubMed  Google Scholar 

  30. Fan L et al. Improved artificial death switches based on caspases and FADD. Hum Gene Ther 1999; 10: 2273–2285.

    Article  CAS  PubMed  Google Scholar 

  31. Suda T et al. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 1997; 186: 2045–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mollereau B et al. Relationship between proliferation and susceptibility to CD95- and CD2-mediated apoptosis in stimulated primary T lymphocytes: T cells manifesting proliferative unresponsiveness are preferentally susceptible to CD95-mediated apoptosis. J Immunol 1997; 159: 2668–2677.

    CAS  PubMed  Google Scholar 

  33. van den Brink MR et al. The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells. J Biol Chem 1999; 274: 11178–11185.

    Article  CAS  PubMed  Google Scholar 

  34. Martin DA, Siegel RM, Zheng L, Lenardo MJ . Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 1998; 273: 4345–4349.

    Article  CAS  PubMed  Google Scholar 

  35. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′untranslated sequences in retroviral vectors developed for medical use. J Virol 1999; 3: 4083–408.

  36. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  37. Miller AD et al. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. AH Owen TC, Barltrop JA, Cory JG . Use of an aqueous soluble tetrazolium/formazan assay for cell growth assay in culture. Cancer Commun 1991; 32: 07

  39. Zimmermann S et al. Four-color flow cytometric analysis for measuring cytotoxic activity of NK cells and T cells against leukemic blasts: simultaneous detection of effector, proliferation, surface marker changes and killing efficiency (submitted for publication).

Download references

Acknowledgements

We thank Christopher Baum and Boris Fehse for kindly providing the retroviral plasmid pSFα11tCD34, Anthony Blau for the plasmid pNF2′hmpl, and Ariad Pharmaceutical for AP20187. We are particulary indebted to Meike von Laer and Martin Zörning for critical comments on the manuscript. This work was supported by the Frankfurter Stiftung für krebskranke Kinder, Frankfurt e.V. and by the Hermann J Abs Program of the Deutsche Bank AG. The Georg-Speyer-Haus is supported by the Bundesministerium für Gesundheit and the Hessisches Ministerium für Wissenschaft und Kunst.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, K., Koehl, U., Zimmerman, S. et al. Kinetics of cell death in T lymphocytes genetically modified with two novel suicide fusion genes. Gene Ther 10, 1189–1197 (2003). https://doi.org/10.1038/sj.gt.3301977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301977

Keywords

This article is cited by

Search

Quick links