Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Efficient gene transfer into human CD34+ cells by an adenovirus type 35 vector

Abstract

Efficient gene transfer into human hematopoietic stem cells (HSCs) is the most important requirement for gene therapy of hematopoietic disorders and for study of the hematopoietic system. An adenovirus (Ad) vector based on the Ad serotype 5 (Ad5) is known to transduce HSCs, including CD34+ cells, with very low efficiency because of low-level expression of its primary receptor, coxsackievirus and adenovirus receptor (CAR). In the present study, we developed a recombinant Ad vector composed of the whole Ad serotype 35 (Ad35), which recognizes an unidentified receptor different from CAR for its infection. A transduction study showed that the Ad35-based vectors exhibit a higher transduction efficiency in human CD34+ cells than the conventional Ad5 vectors and the Ad5F35 vectors, which are fiber-substituted Ad5 vectors containing Ad35 fiber proteins. The mean of fluorescence intensity in the CD34+ cells transduced with the Ad35 vectors was 12–76 and 1.4–3 times higher than that in the cells transduced with the Ad5 and Ad5F35 vectors, respectively. The percentages of green fluorescent protein (GFP)-positive CD34+ cells by transduction with Ad35, Ad5, and Ad5F35 vectors expressing GFP at 300 PFU/cell were 53%, 5%, and 52%, respectively, suggesting that Ad35 vectors mediate a more efficient gene transfer into human CD34+ cells than Ad5 and Ad5F35 vectors, although the percentage of transduced cells was similar between Ad35 and Ad5F35 vectors. The Ad vector based on Ad35 could be very useful in gene therapy for blood disorders and gene transfer experiments using HSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bodine DM et al. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 1993; 82: 1975–1980.

    CAS  PubMed  Google Scholar 

  2. Crooks GM, Kohn DB . Growth factors increase amphotropic retrovirus binding to human CD34+ bone marrow progenitor cells. Blood 1993; 82: 3290–3297.

    CAS  PubMed  Google Scholar 

  3. Neering SJ et al. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 1996; 88: 1147–1155.

    CAS  PubMed  Google Scholar 

  4. Rebel VI et al. Maturation and lineage-specific expression of the coxsackie and adenovirus receptor in hematopoietic cells. Stem Cells 2000; 18: 176–182.

    Article  CAS  PubMed  Google Scholar 

  5. Myerowitz RL et al. Fatal disseminated adenovirus infection in a renal transplant recipient. Am J Med 1975; 59: 591–598.

    Article  CAS  PubMed  Google Scholar 

  6. Segerman A, Mei YF, Wadell G . Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 2000; 74: 1457–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knaan-Shanzer S et al. Highly efficient targeted transduction of undifferentiated human hematopoietic cells by adenoviral vectors displaying fiber knobs of subgroup B. Hum Gene Ther 2001; 12: 1989–2005.

    Article  CAS  PubMed  Google Scholar 

  9. Yotnda P et al. Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 2001; 8: 930–937.

    Article  CAS  PubMed  Google Scholar 

  10. Mizuguchi H, Hayakawa T . Adenovirus vectors containing chimeric type 5 and type 35 fiber proteins exhibit altered and expanded tropism and increase the size limit of foreign genes. Gene 2002; 285: 69–77.

    Article  CAS  PubMed  Google Scholar 

  11. Mizuguchi H, Sakurai F, Hayakawa T . Single adenovirus vector containing both rtTA and rTS expression cassette provides a tightly regulated transgene expression in a positive manner, (submitted for publication).

  12. Okada N et al. Efficient antigen gene transduction using Arg–Gly–Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61: 7913–7919.

    CAS  PubMed  Google Scholar 

  13. Krougliak V, Graham FL . Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants. Hum Gene Ther 1995; 6: 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  14. Mizuguchi H et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther 2001; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  15. Kanegae Y, Makimura M, Saito I . A simple and efficient method for purification of infectious recombinant adenovirus. Jpn J Med Sci Biol 1994; 47: 157–166.

    Article  CAS  PubMed  Google Scholar 

  16. Maizel Jr JV, White DO, Scharff MD . The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 1968; 36: 115–125.

    Article  CAS  PubMed  Google Scholar 

  17. Defer C, Belin MT, Caillet-Boudin ML, Boulanger P . Human adenovirus-host cell interactions: comparative study with members of subgroups B and C. J Virol 1990; 64: 3661–3673.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Farina SF et al. Replication-defective vector based on a chimpanzee adenovirus. J Virol 2001; 75: 11603–11613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abrahamsen K et al. Construction of an adenovirus type 7a E1A- vector. J Virol 1997; 71: 8946–8951.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang MM, Hearing P . Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 1989; 63: 2605–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Richardson WD, Westphal H . A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell 1981; 27: 133–141.

    Article  CAS  PubMed  Google Scholar 

  22. Leppard KN . E4 gene function in adenovirus, adenovirus vector and adeno-associated virus infections. J Gen Virol 1997; 78(Pt 9): 2131–2138.

    Article  CAS  PubMed  Google Scholar 

  23. Weinberg DH, Ketner G . Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 1986; 57: 833–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nordqvist K, Akusjarvi G . Adenovirus early region 4 stimulates mRNA accumulation via 5' introns. Proc Natl Acad Sci USA 1990; 87: 9543–9547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohman K, Nordqvist K, Akusjarvi G . Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation. Virology 1993; 194: 50–58.

    Article  CAS  PubMed  Google Scholar 

  26. Bridge E, Ketner G . Redundant control of adenovirus late gene expression by early region 4. J Virol 1989; 63: 631–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stecher H, Shayakhmetov DM, Stamatoyannopoulos G, Lieber A . A capsid-modified adenovirus vector devoid of all viral genes: assessment of transduction and toxicity in human hematopoietic cells. Mol Ther 2001; 4: 36–44.

    Article  CAS  PubMed  Google Scholar 

  28. Seth P . Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 1994; 68: 1204–1206.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR . Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127: 257–264.

    Article  CAS  PubMed  Google Scholar 

  30. Bai M, Campisi L, Freimuth P . Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2. J Virol 1994; 68: 5925–5932.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai M, Harfe B, Freimuth P . Mutations that alter an Arg–Gly–Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 1993; 67: 5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathias P, Wickham T, Moore M, Nemerow G . Multiple adenovirus serotypes use alpha v integrins for infection. J Virol 1994; 68: 6811–6814.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Vuori K, Reed JC, Ruoslahti E . The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 1995; 92: 6161–6165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meredith Jr JE, Fazeli B, Schwartz MA . The extracellular matrix as a cell survival factor. Mol Biol Cell 1993; 4: 953–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyazawa N, Crystal RG, Leopold PL . Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 2001; 75: 1387–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyazawa N et al. Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors. J Virol 1999; 73: 6056–6065.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shayakhmetov DM et al. The primary attachment receptor and genome size determine efficiency of intracellular trafficking and gene transfer by adenovirus vectors (Abstract from the Fifth Annual Meeting of the American Society of Gene Therapy). Molr Ther 2002; 5: S433.

    Google Scholar 

  38. Steinwaerder DS, Lieber A . Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 2000; 7: 556–567.

    Article  CAS  PubMed  Google Scholar 

  39. Rubinchik S et al. Creation of a new transgene cloning site near the right ITR of Ad5 results in reduced enhancer interference with tissue-specific and regulatable promoters. Gene Ther 2001; 8: 247–253.

    Article  CAS  PubMed  Google Scholar 

  40. Bregni M et al. Adenovirus vectors for gene transduction into mobilized blood CD34+ cells. Gene Ther 1998; 5: 465–472.

    Article  CAS  PubMed  Google Scholar 

  41. Zhong Q et al. Efficient c-kit receptor-targeted gene transfer to primary human CD34-selected hematopoietic stem cells. J Virol 2001; 75: 10393–10400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitazono M et al. Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood 2002; 99: 2248–2251.

    Article  CAS  PubMed  Google Scholar 

  43. Shayakhmetov DM et al. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells. J Virol 2002; 76: 1135–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueno T et al. Site-specific integration of a transgene mediated by a hybrid adenovirus/adeno-associated virus vector using the Cre/loxP-expression-switching system. Biochem Biophys Res Commun 2000; 273: 473–478.

    Article  CAS  PubMed  Google Scholar 

  45. Recchia A et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 1999; 96: 2615–2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang WG et al. Molecular cloning and physical mapping of the DNA of human adenovirus type 35. Acta Microbiol Hung 1989; 36: 67–75.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, F., Mizuguchi, H. & Hayakawa, T. Efficient gene transfer into human CD34+ cells by an adenovirus type 35 vector. Gene Ther 10, 1041–1048 (2003). https://doi.org/10.1038/sj.gt.3301959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301959

Keywords

This article is cited by

Search

Quick links