Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Non-viral gene delivery in skeletal muscle: a protein factory

Abstract

Ever since the publication of the first reports in 1990 using skeletal muscle as a direct target for expressing foreign transgenes, an avalanche of papers has identified a variety of proteins that can be synthesized and correctly processed by skeletal muscle. The impetus to the development of such applications is not only amelioration of muscle diseases, but also a range of therapeutic applications, from immunization to delivery of therapeutic proteins, such as clotting factors and hormones. Although the most efficient way of introducing transgenes into muscle fibres has been by a variety of recombinant viral vectors, there are potential benefits in the use of non-viral vectors. In this review we assess the recent advances in construction and delivery of naked plasmid DNA to skeletal muscle and highlight the options available for further improvements to raise efficiency to therapeutic levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wolff JA et al. Direct gene transfer into mouse skeletal muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  2. Naldini L . Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457–463.

    CAS  PubMed  Google Scholar 

  3. Wang Y et al. HSV-1 amplicon vectors are a highly efficient gene delivery system for skeletal muscle myoblasts and myotubes. Am J Physiol Cell Physiol 2000; 278: C619–C626.

    CAS  PubMed  Google Scholar 

  4. Akkaraju GR et al. Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. J Gene Med 1999; 1: 280–289.

    CAS  PubMed  Google Scholar 

  5. Tsukamoto H et al. Enhanced expression of recombinant dystrophin following intramuscular injection of Epstein–Barr virus (EBV)-based mini-chromosome vectors in mdx mice. Gene Ther 1999; 6: 1331–1335.

    CAS  PubMed  Google Scholar 

  6. Chao H et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2000; 102: 619–623.

    Google Scholar 

  7. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kessler PD et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93: 14 082–14 087.

    Google Scholar 

  9. Hagstrom JN et al. Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood 2000; 95: 2536–2542.

    CAS  PubMed  Google Scholar 

  10. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13 714–13 719.

    Google Scholar 

  11. Xiao X et al. Full functional rescue of a complete muscle (TA) in dystrophic hamsters by adeno-associated virus vector-directed gene therapy. J Virol 2000; 74: 1436–1442.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu DR et al. Stage I clinical trial of gene therapy for hemophilia B. Sci China B 1993; 36: 1342–1351.

    CAS  PubMed  Google Scholar 

  13. Kay MA et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    CAS  PubMed  Google Scholar 

  14. Fields PA et al. Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9. Mol Ther 2001; 4: 201–210.

    CAS  PubMed  Google Scholar 

  15. Drittanti L et al. Optimised helper virus-free production of high-quality adeno-associated virus vectors. J Gene Med 2001; 3: 59–71.

    Article  CAS  PubMed  Google Scholar 

  16. Nakai H, Storm TA, Kay MA . Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 2000; 18: 527–532.

    CAS  PubMed  Google Scholar 

  17. Duan D, Yue Y, Yan Z, Engelhardt JF . A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 2000; 6: 595–598.

    CAS  PubMed  Google Scholar 

  18. Sun L, Li J, Xiao X . Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 2000; 6: 599–602.

    CAS  PubMed  Google Scholar 

  19. McMahon JM et al. Inflammatory responses following direct injection of plasmid DNA into skeletal muscle. Gene Ther 1998; 5: 1283–1290.

    CAS  PubMed  Google Scholar 

  20. Fewell JG et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol Ther 2001; 3: 574–583.

    CAS  PubMed  Google Scholar 

  21. Herzog RW et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    CAS  PubMed  Google Scholar 

  22. McMahon JM et al. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase – increased expression with reduced muscle damage. Gene Ther 2001; 8: 1264–1270.

    CAS  PubMed  Google Scholar 

  23. Blaveri K et al. Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn. 1999; 216: 244–256.

    CAS  PubMed  Google Scholar 

  24. Partridge TA . Invited review: myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve 1991; 14: 197–212.

    CAS  PubMed  Google Scholar 

  25. Gussoni E et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401: 390–394.

    CAS  PubMed  Google Scholar 

  26. McKinney-Freeman SL et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 2002; 99: 1341–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Arruda VR et al. Protein posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 2001; 97: 130–138.

    CAS  PubMed  Google Scholar 

  28. Tripathy SK et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector. Proc Natl Acad Sci USA 1996; 93: 10 876–10 880.

    Google Scholar 

  29. Wells DJ, Goldspink G . Age and sex influence expression of plasmid DNA directly injected into mouse skeletal muscle. FEBS Lett 1992; 306: 203–205.

    CAS  PubMed  Google Scholar 

  30. Li X, Eastman EM, Schwartz RJ, Draghia-Akli R . Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat Biotechnol 1999; 17: 241–245.

    CAS  PubMed  Google Scholar 

  31. Xu ZL et al. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 2001; 272: 149–156.

    CAS  PubMed  Google Scholar 

  32. Reecy JM et al. Multiple regions of the porcine alpha-skeletal actin gene modulate muscle-specific expression in cell culture and directly injected skeletal muscle. Anim Biotechnol 1998; 9: 101–120.

    CAS  PubMed  Google Scholar 

  33. Kelly R et al. Myosin light chain 3F regulatory sequences conter regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 1995; 129: 383–396.

    CAS  PubMed  Google Scholar 

  34. Bou-Gharios G et al. Differential expression and secretion of alpha 1 anti-trypsin between direct DNA injection and implantation of transfected myoblast. Gene Ther 1999; 6: 1021–1029.

    CAS  PubMed  Google Scholar 

  35. Franz WM, Rothmann T, Frey N, Katus HA . Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc Res 1997; 35: 560–566.

    CAS  PubMed  Google Scholar 

  36. Cordier L et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum Gene Ther 2001; 12: 205–215.

    CAS  PubMed  Google Scholar 

  37. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13 714–13 719.

    Google Scholar 

  38. Lu QL et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J Cell Biol 2000; 148: 985–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barnhart KM et al. Enhancer and promoter chimeras in plasmids designed for intramuscular injection: a comparative in vivo and in vitro study. Hum Gene Ther 1998; 9: 2545–2553.

    CAS  PubMed  Google Scholar 

  40. Li S et al. Muscle-specific enhancement of gene expression by incorporation of SV40 enhancer in the expression plasmid. Gene Ther 2001; 8: 494–497.

    CAS  PubMed  Google Scholar 

  41. Ribbeck K, Gorlich D . Kinetic analysis of translocation through nuclear pore complexes. EMBO J 2001; 20: 1320–1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan CK, Hubner S, Hu W, Jans DA . Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther 1998; 5: 1204–1212.

    CAS  PubMed  Google Scholar 

  43. Dean DA . Import of plasmid DNA into the nucleus is sequence specific. Exp Cell Res 1997; 230: 293–302.

    CAS  PubMed  Google Scholar 

  44. Dean DA, Dean BS, Muller S, Smith LC . Sequence require-ments for plasmid nuclear import. Exp Cell Res 1999; 253: 713–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Langle-Rouault F et al. Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J Virol 1998; 72: 6181–6185.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsujie M et al. Prolonged transgene expression in glomeruli using an EBV replicon vector system combined with HVJ liposomes. Kidney Int 2001; 59: 1390–1396.

    CAS  PubMed  Google Scholar 

  47. Li S et al. Increased level and duration of expression in muscle by co-expression of a transactivator using plasmid systems. Gene Ther 1999; 6: 2005–1123.

    CAS  PubMed  Google Scholar 

  48. Bohl D, Naffakh N, Heard JM . Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 1997; 3: 299–305.

    CAS  PubMed  Google Scholar 

  49. Ye X et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999; 283: 88–91.

    CAS  PubMed  Google Scholar 

  50. Mansuy IM, Bujard H . Tetracycline-regulated gene expression in the brain. Curr Opin Neurobiol 2000; 10: 593–596.

    CAS  PubMed  Google Scholar 

  51. Ozawa CR, Springer ML, Blau HM . A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40: 295–317.

    CAS  PubMed  Google Scholar 

  52. Cao X et al. Efficient inducation of local and systemic antitumor immune response by liposome-mediated intratumoral co-transfer of interleukin-2 gene and interleukin-6 gene. J Exp Clin Cancer Res 1999; 18: 191–200.

    CAS  PubMed  Google Scholar 

  53. Vitiello L, Bockhold K, Joshi PB, Worton RG . Transfection of cultured myoblasts in high serum concentration with DODAC:DOPE liposomes. Gene Ther 1998; 5: 1306–1313.

    CAS  PubMed  Google Scholar 

  54. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stamatatos L, Leventis R, Zuckermann MJ, Silvius JR . Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 1988; 27: 3917–3925.

    CAS  PubMed  Google Scholar 

  56. Zabner J et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18 997–19 007.

    Google Scholar 

  57. Hafez IM, Maurer N, Cullis PR . On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001; 8: 1188–1196.

    CAS  PubMed  Google Scholar 

  58. Hyde SC et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 2000; 7: 1156–1165.

    CAS  PubMed  Google Scholar 

  59. Boussif O et al. Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J Gene Med 2001; 3: 109–114.

    CAS  PubMed  Google Scholar 

  60. Koehler DR et al. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther 2001; 4: 58–65.

    CAS  PubMed  Google Scholar 

  61. Helbling-Leclerc A, Scherman D, Wils P . Cellular uptake of cationic lipid/DNA complexes by cultured myoblasts and myotubes. Biochim Biophys Acta 1999; 1418: 165–175.

    CAS  PubMed  Google Scholar 

  62. Manthorpe M et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice. Hum Gene Ther 1993; 4: 419–431.

    CAS  PubMed  Google Scholar 

  63. Caron NJ et al. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther 2001; 3: 310–318.

    CAS  PubMed  Google Scholar 

  64. Ruponen M et al. Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. J Biol Chem 2001; 276: 33 875–33 880.

    Google Scholar 

  65. Leventis R, Silvius JR . Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1990; 1023: 124–132.

    CAS  PubMed  Google Scholar 

  66. Dodds E et al. Lipofection of cultured mouse muscle cells: a direct comparison of Lipofectamine and DOSPER. Gene Ther 1998; 5: 542–551.

    CAS  PubMed  Google Scholar 

  67. Behr JP . Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem 1994; 5: 382–389.

    CAS  PubMed  Google Scholar 

  68. Lemieux P et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther 2000; 7: 986–991.

    CAS  PubMed  Google Scholar 

  69. Mumper RJ et al. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm Res 1996; 13: 701–709.

    CAS  PubMed  Google Scholar 

  70. Nguyen HK et al. Evaluation of polyether–polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 2000; 7: 126–138.

    CAS  PubMed  Google Scholar 

  71. Jeong JH et al. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release 2001; 73: 391–399.

    CAS  PubMed  Google Scholar 

  72. Campeau P et al. Transfection of large plasmids in primary human myoblasts. Gene Ther 2001; 8: 1387–1394.

    CAS  PubMed  Google Scholar 

  73. Anwer K et al. Synergistic effect of formulated plasmid and needle-free injection for genetic vaccines. Pharm Res 1999; 16: 889–895.

    CAS  PubMed  Google Scholar 

  74. Batrakova EV et al. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther 2001; 296: 551–557.

    CAS  PubMed  Google Scholar 

  75. von Moltke LL, Greenblatt DJ . Drug transporters revisited. J Clin Psychopharmacol 2001; 21: 1–3.

    CAS  PubMed  Google Scholar 

  76. Krauzewicz N et al. Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther 2000; 7: 1094–1102.

    CAS  PubMed  Google Scholar 

  77. Kremer EJ, Perricaudet M . Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull 1995; 51: 31–44.

    CAS  PubMed  Google Scholar 

  78. Bremner KH, Seymour LW, Pouton CW . Harnessing nuclear localization pathways for transgene delivery. Curr Opin Mol Ther 2001; 3: 170–177.

    CAS  PubMed  Google Scholar 

  79. Plank C, Zauner W, Wagner E . Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 1998; 34: 21–35.

    CAS  PubMed  Google Scholar 

  80. Wagner E et al. DNA-binding transferrin conjugates as functional gene-delivery agents: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. Bioconjug Chem 1991; 2: 226–231.

    CAS  PubMed  Google Scholar 

  81. Plank C et al. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 1994; 269: 12 918–12 924.

    Google Scholar 

  82. Gottschalk S et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther 1996; 3: 48–57.

    Google Scholar 

  83. Subbarao NK et al. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 1987; 26: 2964–2972.

    CAS  PubMed  Google Scholar 

  84. Parente RA, Nadasdi L, Subbarao NK, Szoka Jr FC . Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence. Biochemistry 1990; 29: 8713–8719.

    CAS  PubMed  Google Scholar 

  85. Haensler J, Szoka Jr FC . Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 1993; 4: 372–379.

    CAS  PubMed  Google Scholar 

  86. Wyman TB et al. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997; 36: 3008–3017.

    CAS  PubMed  Google Scholar 

  87. Rittner K et al. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther 2002; 5: 104–114.

    CAS  PubMed  Google Scholar 

  88. Morris MC, Chaloin L, Heitz F, Divita G . Translocating peptides and proteins and their use for gene delivery. Curr Opin Biotechnol 2000; 11: 461–466.

    CAS  PubMed  Google Scholar 

  89. Luo D, Saltzman WM . Synthetic DNA delivery systems. Nat Biotechnol 2000; 18: 33–37.

    CAS  PubMed  Google Scholar 

  90. Ciolina C et al. Coupling of nuclear localization signals to plasmid DNA and specific interaction of the conjugates with importin alpha. Bioconjug Chem 1999; 10: 49–55.

    CAS  PubMed  Google Scholar 

  91. Godbey WT, Wu KK, Hirasaki GJ, Mikos AG . Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 1999; 6: 1380–1388.

    CAS  PubMed  Google Scholar 

  92. Collas P, Alestrom P . Rapid targeting of plasmid DNA to zebrafish embryo nuclei by the nuclear localization signal of SV40 T antigen. Mol Mar Biol Biotechnol 1997; 6: 48–58.

    CAS  PubMed  Google Scholar 

  93. Kaneda Y, Iwai K, Uchida T . Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 1989; 243: 375–378.

    CAS  PubMed  Google Scholar 

  94. Fritz JD, Herweijer H, Zhang G, Wolff JA . Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 1996; 7: 1395–1404.

    CAS  PubMed  Google Scholar 

  95. Wong TK, Neumann E . Electric field mediated gene transfer. Biochem Biophys Res Commun 1982; 107: 584–587.

    CAS  PubMed  Google Scholar 

  96. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    CAS  PubMed  Google Scholar 

  97. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999; 96: 4262–4267.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yin D, Tang JG . Gene therapy for streptozotocin-induced diabetic mice by electroporational transfer of naked human insulin precursor DNA into skeletal muscle in vivo. FEBS Lett 2001; 495: 16–20.

    CAS  PubMed  Google Scholar 

  99. Watanabe K et al. Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation 2001; 104: 1098–1100.

    CAS  PubMed  Google Scholar 

  100. Maruyama H et al. Long-term production of erythropoietin after electroporation-mediated transfer of plasmid DNA into the muscles of normal and uremic rats. Gene Ther 2001; 8: 461–468.

    CAS  PubMed  Google Scholar 

  101. Kishida T et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Ther 2001; 8: 1234–1240.

    CAS  PubMed  Google Scholar 

  102. Pruchnic R et al. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum Gene Ther 2000; 11: 521–536.

    CAS  PubMed  Google Scholar 

  103. Favre D et al. Hyaluronidase enhances recombinant adeno-associated virus (rAAV)- mediated gene transfer in the rat skeletal muscle. Gene Ther 2000; 7: 1417–1420.

    CAS  PubMed  Google Scholar 

  104. Matzinger P . Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045.

    CAS  PubMed  Google Scholar 

  105. Vilquin JT et al. Electrotransfer of naked DNA in the skeletal muscles of animal models of muscular dystrophies. Gene Ther 2001; 8: 1097–1107.

    CAS  PubMed  Google Scholar 

  106. Fechheimer M et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA 1987; 84: 8463–8467.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lawrie A et al. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther 2000; 7: 2023–2027.

    CAS  PubMed  Google Scholar 

  108. Newman CM, Lawrie A, Brisken AF, Cumberland DC . Ultrasound gene therapy: on the road from concept to reality. Echocardiography 2001; 18: 339–347.

    CAS  PubMed  Google Scholar 

  109. Amabile PG et al. High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 2001; 37: 1975–1980.

    CAS  PubMed  Google Scholar 

  110. Koch S, Pohl P, Cobet U, Rainov NG . Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 2000; 26: 897–903.

    CAS  PubMed  Google Scholar 

  111. Anwer K et al. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther 2000; 7: 1833–1839.

    CAS  PubMed  Google Scholar 

  112. Manome Y, Nakamura M, Ohno T, Furuhata H . Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum Gene Ther 2000; 11: 1521–1528.

    CAS  PubMed  Google Scholar 

  113. Wei K et al. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997; 29: 1081–1088.

    CAS  PubMed  Google Scholar 

  114. Takeshita S, Isshiki T, Sato T . Increased expression of direct gene transfer into skeletal muscles observed after acute ischemic injury in rats. Lab Invest 1996; 74: 1061–1065.

    CAS  PubMed  Google Scholar 

  115. Zhang G et al. Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001; 12: 427–438.

    CAS  PubMed  Google Scholar 

  116. Budker V et al. The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 1998; 5: 272–276.

    CAS  PubMed  Google Scholar 

  117. Liu F, Nishikawa M, Clemens PR, Huang L . Transfer of full-length Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA. Mol Ther 2001; 4: 45–51.

    CAS  PubMed  Google Scholar 

  118. Greelish JP et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 1999; 5: 439–443.

    CAS  PubMed  Google Scholar 

  119. Lee JY, Hirono II, Aoki T . Stable expression of a foreign gene, delivered by gene gun, in the muscle of rainbow trout Oncorhynchus mykiss. Mar Biotechnol 2000; 2: 254–258.

    CAS  Google Scholar 

  120. Walther W et al. Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 2001; 8: 173–180.

    CAS  PubMed  Google Scholar 

  121. Huang ZM, Yen TS . Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol Cell Biol 1995; 15: 3864–3869.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gaetano C et al. Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. Gene Ther 2000; 7: 1624–1630.

    CAS  PubMed  Google Scholar 

  124. Pombo A et al. Specialized transcription factories within mammalian nuclei. Crit Rev Eukaryot Gene Expr 2000; 10: 21–29.

    CAS  PubMed  Google Scholar 

  125. Friedmann T . Gene therapy – fact and fiction. In: Friedmann T (ed.). Biology's New Approaches to Diseases. Cold Spring Harbor Laboratory, NY, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Bou-Gharios, G. & Partridge, T. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 10, 131–142 (2003). https://doi.org/10.1038/sj.gt.3301874

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301874

Keywords

This article is cited by

Search

Quick links