Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas

Abstract

Radioactive iodide uptake (RAIU) in thyroid follicular epithelial cells, mediated by the sodium iodide symporter (NIS), is the first rate-limiting step in iodide accumulation which provides a mechanism for effective radioiodide treatment for patients with thyroid cancer. We hypothesize that NIS gene transfer to non-thyroid tumor cells will enhance intracellular radioiodide accumulation and result in better tumor control. Here, we performed non-invasive tumor imaging and 131I therapy studies using rats bearing intracerebral F98 gliomas that have been retrovirally transduced with human NIS. Our results show that: (1) NIS is expressed in the intracerebral F98/NIS gliomas; (2) F98/NIS gliomas can be imaged by 99mTcO4 (whose uptake is also mediated by NIS) and 123I scintigraphy; (3) significant amounts of radioiodide were retained in the tumors at 24 h after 123I injection; (4) RAIU and NIS expression in the thyroid gland can be reduced by feeding a thyroxine-supplemented diet; and (5) survival time was increased in rats bearing F98/hNIS tumors by 131I treatment. These studies warrant further investigating tumor imaging and therapeutic strategies based on NIS gene transfer followed by radioiodide administration in a variety of human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Smanik PA et al. Cloning of the human sodium iodide symporter Biochem Biophys Res Commun 1996 226: 339–345

    Article  CAS  PubMed  Google Scholar 

  2. Dai G, Levy O, Carrasco N . Cloning and characterization of the thyroid iodide transporter Nature 1996 379: 458–460

    Article  CAS  PubMed  Google Scholar 

  3. Levy O et al. Identification of a structural requirement for thyroid Na+/I− symporter (NIS) function from analysis of a mutation that causes human congenital hypothyroidism FEBS Lett 1998 429: 36–40

    Article  CAS  PubMed  Google Scholar 

  4. Eskandari S et al. Thyroid Na+/I− symporter. Mechanism, stoichiometry, and specificity J Biol Chem 1997 272: 27230–27238

    Article  CAS  PubMed  Google Scholar 

  5. Kotzerke J et al. Pharmacokinetics of 99mTc-pertechnetate and 188Re-perrhenate after oral administration of perchlorate: option for subsequent care after the use of liquid 188Re in a balloon catheter Nucl Med Commun 1998 19: 795–801

    Article  CAS  PubMed  Google Scholar 

  6. Lin WY et al. A comprehensive study on the blockage of thyroid and gastric uptakes of 188Re-perrhenate in endovascular irradiation using liquid-filled balloon to prevent restenosis Nucl Med Biol 2000 27: 83–87

    Article  CAS  PubMed  Google Scholar 

  7. Larsen RH, Slade S, Zalutsky MR . Blocking [211At]astatide accumulation in normal tissues: preliminary evaluation of seven potential compounds Nucl Med Biol 1998 25: 351–357

    Article  CAS  PubMed  Google Scholar 

  8. Cobb LM et al. Relative concentration of astatine-211 and iodine-125 by human fetal thyroid and carcinoma of the thyroid in nude mice Radiother Oncol 1988 13: 203–209

    Article  CAS  PubMed  Google Scholar 

  9. Spitzweg C et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines Cancer Res 1999 59: 2136–2141

    CAS  PubMed  Google Scholar 

  10. Shimura H et al. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I− symporter gene Endocrinology 1997 138: 4493–4496

    Article  CAS  PubMed  Google Scholar 

  11. Cho JY et al. Expression and activity of human Na+/I− symporter in human glioma cells by adenovirus-mediated gene delivery Gene Therapy 2000 7: 740–749

    Article  CAS  PubMed  Google Scholar 

  12. Mandell RB, Mandell LZ, Link CJ Jr . Radioisotope concentrator gene therapy using the sodium/iodide symporter gene Cancer Res 1999 59: 661–668

    CAS  PubMed  Google Scholar 

  13. Boland A et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy Cancer Res 2000 60: 3484–3492

    CAS  PubMed  Google Scholar 

  14. Carlin S et al. Experimental radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two- and three-dimensional models Cancer Gene Ther 2000 7: 1529–1536

    Article  CAS  PubMed  Google Scholar 

  15. Goodman JH et al. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy Neurosurgery 1990 27: 383–388

    Article  CAS  PubMed  Google Scholar 

  16. Clendenon NR et al. Boron neutron capture therapy of a rat glioma Neurosurgery 1990 26: 47–55

    Article  CAS  PubMed  Google Scholar 

  17. Spitzweg C et al. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter Cancer Res 2000 60: 6526–6530

    CAS  PubMed  Google Scholar 

  18. Huang M et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer Cancer Gene Ther 2001 8: 612–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dadachova E et al. Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS) Nucl Med Biol 2002 29: 13–18

    Article  CAS  PubMed  Google Scholar 

  20. Postema EJ et al. Radioimmunotherapy of B-cell non-Hodgkin's lymphoma Eur J Nucl Med 2001 28: 1725–1735

    Article  CAS  PubMed  Google Scholar 

  21. Wheldon TE . Radiation physics and genetic targeting: new directions for radiotherapy Phys Med Biol 2000 45: R77–R95

    Article  CAS  PubMed  Google Scholar 

  22. Ko L, Koestner A, Wechsler W . Characterization of cell cycle and biological parameters of transplantable glioma cell lines and clones Acta Neuropathol (Berl) 1980 51: 107–111

    Article  CAS  Google Scholar 

  23. Ko L, Koestner A, Wechsler W . Morphological characterization of nitrosourea-induced glioma cell lines and clones Acta Neuropathol (Berl) 1980 51: 23–31

    Article  CAS  Google Scholar 

  24. Kobayashi N et al. An improved rat brain-tumor model J Neurosurg 1980 53: 808–815

    Article  CAS  PubMed  Google Scholar 

  25. Miller DA, Rosman GJ . Improved retroviral vectors for gene transfer and expression BioTechniques 1989 7: 980–990

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barth RF et al. Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine Int J Radiat Oncol Biol Phys 2000 47: 209–218

    Article  CAS  PubMed  Google Scholar 

  27. Jhiang SM et al. An immunohistochemical study of Na+/I− symporter in human thyroid tissues and salivary gland tissues Endocrinology 1998 139: 4416–4419

    Article  CAS  PubMed  Google Scholar 

  28. Cho JY et al. Hormonal regulation of radioiodide uptake activity and Na+/I− symporter expression in mammary glands J Clin Endocrinol Metab 2000 85: 2936–2943

    CAS  PubMed  Google Scholar 

  29. Barth RF et al. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood–brain barrier disruption Cancer Res 1997 57: 1129–1136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Kathleen Boris-Lawrie for providing the pLXSN retroviral vector, Mr Steve Lefevre for preparation of radionuclides, and Ms Danielle Westfall for assistance with animal handling.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JY., Shen, D., Yang, W. et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 9, 1139–1145 (2002). https://doi.org/10.1038/sj.gt.3301787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301787

Keywords

This article is cited by

Search

Quick links