Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Global gene and cell replacement strategies via stem cells

Abstract

The inherent biology of neural stem cells (NSCs) endows them with capabilities that not only circumvent many of the limitations of other gene transfer vehicles, but that enable a variety of novel therapeutic strategies heretofore regarded as beyond the purview of neural transplantation. Most neurodegenerative diseases are characterized not by discrete, focal abnormalities but rather by extensive, multifocal, or even global neuropathology. Such widely disseminated lesions have not conventionally been regarded as amenable to neural transplantation. However, the ability of NSCs to engraft diffusely and become integral members of structures throughout the host CNS, while also expressing therapeutic molecules, may permit these cells to address that challenge. Intriguingly, while NSCs can be readily engineered to express specified foreign genes, other intrinsic factors appear to emanate spontaneously from NSCs and, in the context of reciprocal donor–host signaling, seem to be capable of neuroprotective and/or neuroregenerative functions. Stem cells additionally have the appealing ability to ‘home in’ on pathology, even over great distances. Such observations help to advance the idea that NSCs – as a prototype for stem cells from other solid organs – might aid in reconstructing the molecular and cellular milieu of maldeveloped or damaged organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Nikkah G et al. Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesion. I. Evidence for anatomical reconstruction of the nigrostriatal pathway J Neurosci 1995 15: 3548–3561

    Article  PubMed Central  Google Scholar 

  2. Nikkah G, Cunningham MG, McKay R, Bjorklund A . Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery J Neurosci 1995 15: 3562–3570

    Article  Google Scholar 

  3. Kordower JH et al. Neuropathological evidence of graft survival and striatal reinervation after the transplantation of fetal mesencephalic tisssue in a patient with Parkinson's disease N Engl J Med 1995 332: 1118–1124

    Article  CAS  PubMed  Google Scholar 

  4. Freed CR et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease N Engl J Med 2001 344: 763–765

    Article  Google Scholar 

  5. Snyder EY, Taylor RM, Wolfe JH . Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain Nature 1995 374: 367–370

    Article  CAS  PubMed  Google Scholar 

  6. Flax JD et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and expess foreign genes Nature Biotech 1998 16: 1033–1039

    Article  CAS  Google Scholar 

  7. Brustle OC et al. himeric brains generated by intarventricular transplantation of fetal human brain cells into embryonic rats Nature Biotech 1998 11: 1040–1049

    Article  Google Scholar 

  8. Yandava B, Billinghurst L, Snyder E . ‘Global’ cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain Proc Natl Acad Sci USA 1999 96: 7029–7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ourednik V et al. Segregation of human neural stem cells in the developing primate forebrain Science 2001 293: 1820–1824

    Article  CAS  PubMed  Google Scholar 

  10. Snyder EY, Flax JD . Transplantation of neural progenitors and stem-like cells as a strategy for gene therapy and repair of neurodegenerative diseases Mental Retard Dev Dis Res Rev 1995 1: 27–38

    Article  Google Scholar 

  11. McKay R . Stem cells in the central nervous system Science 1997 276: 66–71

    Article  CAS  PubMed  Google Scholar 

  12. Fisher LJ . Neural precursor cells: applications for the study and repair of the central nervous system Neurobiol Dis 1997 4: 1–22

    Article  CAS  PubMed  Google Scholar 

  13. Gage FH . Mammalian neural stem cells Science 2000 287: 1433–1438

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez-Buylla A, Temple S . Neural stem cells J Neurobiol 1998 36: 105–314

    Article  CAS  PubMed  Google Scholar 

  15. Vescovi AL, Snyder EY . Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo Brain Pathol 1999 9: 569–598

    Article  CAS  PubMed  Google Scholar 

  16. Chen KS, Gage FH . Somatic gene transfer of NGF to the aged brain: behavioral and morphologic amelioration J Neurosci 1995 15: 2819–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grill R et al. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury J Neurosci 1997 17: 5560–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu P et al. Neural stem cells secrete BDNF and GDNF, and promote axonal growth after spinal cord injury Soc Neurosci Abstr 2000 26: 332

    Google Scholar 

  19. Dunnett SB, Bjorklund A . Raven Press 2000

  20. Snyder EY et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum Cell 1992 68: 33–55

    Article  CAS  PubMed  Google Scholar 

  21. Snyder EY, Yoon C, Flax JD, Macklis JD . Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex Proc Natl Acad Sci USA 1997 94: 1663–11668

    Article  Google Scholar 

  22. Renfranz PJ, Cunningham MG, McKay RDG . Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain Cell 1991 66: 713–719

    Article  CAS  PubMed  Google Scholar 

  23. Ray J . Spinal cord neuroblasts proliferate in response to basic fibroblast growth factor J Neurosci 1994 14: 3548–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reynolds BA, Weiss S . Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system Science 1992 27: 1707–1710

    Article  Google Scholar 

  25. Gritti A et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor J Neurosci 1996 16: 1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gage FH et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain Proc Natl Acad Sci USA 1996 92: 11879–11883

    Article  Google Scholar 

  27. Suhonen JO, Peterson DA, Ray J, Gage FH . Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo Nature 1996 383: 624–627

    Article  CAS  PubMed  Google Scholar 

  28. Fricker RA et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain J Neurosci 1999 19: 5990–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang S-C et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells Nature Biotech 2001 19: 1129–1133

    Article  CAS  Google Scholar 

  30. Rubinoff BE et al. Neural progenitors from human embryonic stem cells: derivation, expansion, and characterization of their developmental potential in vitro and in vivo Nat Biotech 2001 19: 1134–1140

    Article  Google Scholar 

  31. Park KI, Jensen FE, Stieg PE, Snyder EY . Hypoxic-ischemic (HI) injury may direct the proliferation, migation, and differentiation of endogenous neural progenitors Soc Neurosci Abstr 1998 24: 1310

    Google Scholar 

  32. Magavi SS, Leavitt BR, Macklis JD . Induction of neurogenesis in the neocortex of adult mice Nature 2000 405: 951–955

    Article  CAS  PubMed  Google Scholar 

  33. Magavi SS, Leavitt BR, Macklis JD . Induction of neurogenesis in the neocortex of adult mice Gould E, Reeves AJ, Graziano MS, Gross CG. Science 1999; 286: 548–552

    Article  Google Scholar 

  34. Weiss S et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 1996 19: 387–393

    Article  CAS  PubMed  Google Scholar 

  35. Morshead CM et al. Neural stem cell in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells Neuron 1994 13: 1071–1082

    Article  CAS  PubMed  Google Scholar 

  36. Davis AA, Temple S . A self-renewing multipotential stem cell in embryonic rat cerebral cortex Nature 1994 372: 263–266

    Article  CAS  PubMed  Google Scholar 

  37. Zlomanczuk P et al. Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus Exp Neurol 2002 174: 162–168

    Article  PubMed  Google Scholar 

  38. Doering L, Snyder EY . Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex J Neurosci Res 2000 61: 597–604

    Article  CAS  PubMed  Google Scholar 

  39. Park KI et al. Transplantation of neural progenitor and stem-like cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction J Neurotrauma 1999 16/8: 675–687

    Article  Google Scholar 

  40. Aboody KS et al. Neural stem cells display extensive tropism for pathology in the adult brain: evidence from intracranial gliomas Proc Natl Acad Sci USA 2000 97: 12846–12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ourednik J et al. Massive regeneration of substantia nigra neurons in aged parkinsonian mice after transplantation of neural stem cells overexpressing L1 Soc Neurosci Abstr 1999 25: 1310

    Google Scholar 

  42. Lacorazza HD, Flax JD, Snyder EY, Jendoubi M . Expression of human β-hexosaminidase α-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells Nat Med 1996 4: 424–429

    Article  Google Scholar 

  43. Ourednik V, Ourednik J, Park KI, Snyder EY . Neural stem cells: a versatile tool for cell replacement and gene therapy in the CNS Clin Genet 1999 46: 267–278

    Article  Google Scholar 

  44. Neufeld EF, Fratantoni JC . Inborn errors of mucopolysaccharide metabolism Science 1970 169: 141–146

    Article  CAS  PubMed  Google Scholar 

  45. Luskin MB . Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone Neuron 1993 11: 173–189

    Article  CAS  PubMed  Google Scholar 

  46. Lois C, Alvarez-Buylla A . Long distance neuronal migration in the adult mammalian brain Science 1994 264: 1145–1148

    Article  CAS  PubMed  Google Scholar 

  47. Snyder EY . Neural stem-like cells: developmental lessons with therapeutic potential Neuroscientist 1998 4: 408–425

    Article  Google Scholar 

  48. Uchida N et al. Direct isolation of human central nervous system stem cells Proc Natl Acad Sci USA 2000 97: 14720–14725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lynch WP, Sharpe AH, Snyder EY . Neural stem cells as engraftable packaging lines optimize viral vector-mediated gene delivery to the CNS: evidence from studying retroviral env-related neurodegeneration J Virol 1999 73: 6841–6851

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rubio FJ et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors Gene Therapy 1999 6: 1851–1866

    Article  CAS  PubMed  Google Scholar 

  51. Himes BT et al. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats J Neurosci Res 2001 65: 549–564

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y et al. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus Exp Neurol 1999 158: 9–26

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Serrano A et al. CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the septum J Neurosci 1995 15: 5668–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinez-Serrano A, Fischer W, Bjorklund A . Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain Neuron 1995 15: 473–484

    Article  CAS  PubMed  Google Scholar 

  55. Anton R et al. Neural-targeted gene therapy for rodent and primate hemiparkinsonism Exp Neurol 1994 127: 207–218

    Article  CAS  PubMed  Google Scholar 

  56. Sabaate O et al. Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses Nat Genet 1995 9: 256–260

    Article  Google Scholar 

  57. Anton R et al. Neural transplantation of cells expressing the anti-apoptotic gene bcl-2 Cell Transplant 1995 4: 49–54

    Article  CAS  PubMed  Google Scholar 

  58. Akerud P et al. Neuroprotection through delivery of GDNF by neural stem cells in a mouse model of Parkinson's disease J Neurosci 2001 21: 8108–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosario CM et al. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action Development 1997 124: 4213–4224

    CAS  PubMed  Google Scholar 

  60. Hodges H et al. Conditionally immortal neuroepithelial stem cell grafts reverse age-associated memory impairments in rats Neuroscience 2000 101: 945–955

    Article  CAS  PubMed  Google Scholar 

  61. Tate BA, Werzanski D, Marciniack A, Snyder EY . Migration of neural stem cells to Alzheimer-like lesions in an animal model of AD Soc Neurosci Abstr 2000 26: 496

    Google Scholar 

  62. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A . Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS Exp Neurol 2000 161: 67–84

    Article  CAS  PubMed  Google Scholar 

  63. Roy NS et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus Nat Med 2000 6: 271–277

    Article  CAS  PubMed  Google Scholar 

  64. Pincus DW et al. FGF2/BDNF-associated maturation of new neurons generated from adult human subependymal cells Ann Neurol 1998 43: 576–585

    Article  CAS  PubMed  Google Scholar 

  65. Vescovi AL et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation Exp Neurol 1999 156: 71–83

    Article  CAS  PubMed  Google Scholar 

  66. Rubio FJ et al. Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain Mol Cell Neurosci 2000 16: 1–13

    Article  CAS  PubMed  Google Scholar 

  67. Brustle O et al. In vitro-genereated neural precursors participate in mammalian brain development Proc Natl Acad Sci USA 1997 94: 14809–14814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of the work described here was supported in part by grants to EYS from the National Institute of Neurologic Diseases and Stroke, March of Dimes, Project ALS, Brain Tumor Society, Hunter's Hope, Canavan Research Fund, Late Onset Tay Sachs Foundation, A-T Children's Project, International Organization for Glutaric Acidemia, and Parkinson's Action Network/Michael J Fox Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Y Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Ourednik, J., Ourednik, V. et al. Global gene and cell replacement strategies via stem cells. Gene Ther 9, 613–624 (2002). https://doi.org/10.1038/sj.gt.3301721

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301721

Keywords

This article is cited by

Search

Quick links