Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

HER2 peptide-specific CD8+ T cells are proportionally detectable long after multiple DNA vaccinations

Abstract

We prepared a plasmid encoding 147 amino acid residues from the N terminus of c-erbB-2/HER2/neu (HER2), which included both a cytotoxic T lymphocyte (CTL) epitope (HER2p63) and a helper epitope (HER2p1), using the mammalian expression vector pCAGGS-New (pCAGGS147HER2). In a parallel analysis with a Tetramer assay and CTL assay, good specificity and sensitivity of a quantitative enzyme-linked immunospot (ELISPOT) assay to detect functional HER2p63-specific CD8+ T cells were demonstrated after intramuscular immunization of pCAGGS147HER2. In an ELISPOT assay for HER2p63, spots of IFNγ-producing cells were first detected 10 days after the first immunization, and additional immunizations increased the number of spots. HER2p63-specific CD8+ T cells were detected over a period of more than 10 months after the last immunization. In hosts receiving more than three immunizations, surprisingly high numbers of specific CD8+ T cells were persistently detectable. HER2 protein-specific antibodies of IgG class with dominance of IgG2a remain detectable 6 months after single or multiple immunizations. The antibodies however, were not reactive with cell surface HER2 antigens. Total suppression of tumor growth was observed when syngeneic HER2+ tumor cells (2 × 106) were injected subcutaneously 14 days after a single immunization with pCAGGS147HER2. Furthermore, the number of pulmonary metastases decreased significantly when DNA vaccination was initiated on the day of, or 3 days after, intravenous injection (1 × 106 cells).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Gurunathan S, Klinman DM, Seder RA . DNA vaccines: immunology, application, and optimization Annu Rev Immunol 2000 18: 927–974

    Article  CAS  PubMed  Google Scholar 

  2. Raz E et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses Proc Natl Acad Sci USA 1994 91: 9519–9523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis HL, Mancini M, Michel ML, Whalen RG . DNA-mediated immunization to hepatitis B surface antigen: longevity of primary response and effect of boost Vaccine 1996 14: 910–915

    Article  CAS  PubMed  Google Scholar 

  4. Deck RR et al. Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine Vaccine 1997 15: 71–78

    Article  CAS  PubMed  Google Scholar 

  5. Wolff JA et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle Hum Mol Genet 1992 1: 363–369

    Article  CAS  PubMed  Google Scholar 

  6. Akbari O et al. DNA vaccination: transfection and activation of dendritic cells as key events for immunity J Exp Med 1999 189: 169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hassett DE, Zhang J, Slifka MK, Whitton JL . Immune responses following neonatal DNA vaccination are long-lived, abundant, and qualitatively similar to those induced by conventional immunization J Virol 2000 74: 2620–2627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hassett DE, Slifka MK, Zhang J, Whitton JL . Direct ex vivo kinetic and phenotypic analyses of CD8+ T-cell responses induced by DNA immunization J Virol 2000 74: 8286–8291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagata Y et al. Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts J Immunol 1997 159: 1336–1343

    CAS  PubMed  Google Scholar 

  10. Gu XG et al. A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas Cancer Res 1998 58: 3385–3390

    CAS  PubMed  Google Scholar 

  11. Ikuta Y et al. A HER2/neu-derived peptide, a Kd-restricted murine tumor rejection antigen, induces HER2-specific HLA-A2402-restricted CD8+ cytotoxic T lymphocytes Int J Cancer 2000 87: 553–558

    Article  CAS  PubMed  Google Scholar 

  12. Okugawa T et al. A novel human HER2-derived peptide homologous to the mouse Kd-restricted tumor rejection antigen can induce HLA-A24- restricted cytotoxic T lymphocytes in ovarian cancer patients and healthy individuals Eur J Immunol 2000 30: 3338–3346

    Article  CAS  PubMed  Google Scholar 

  13. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474–478

    Article  CAS  PubMed  Google Scholar 

  14. Toes REM, Ossendorp F, Offringa R, Melief CJM . CD4 T cells and their role in antitumor immune responses J Exp Med 1999 189: 753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hung K et al. The central role of CD4+ T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franco A et al. Epitope affinity for MHC class I determines helper requirement for CTL priming Nature Immunol 2000 1: 145–150

    Article  CAS  Google Scholar 

  17. Chen Y et al. DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors Cancer Res 1998 58: 1965–1971

    CAS  PubMed  Google Scholar 

  18. Amici A et al. DNA vaccination with full-length or truncated Neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice Gene Therapy 2000 7: 703–706

    Article  CAS  PubMed  Google Scholar 

  19. Rovero S et al. DNA vaccination against rat Her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice J Immunol 2000 165: 5133–5142

    Article  CAS  PubMed  Google Scholar 

  20. Rovero S et al. Insertion of the DNA for the 163-171 peptide of IL1β enables a DNA vaccine encoding p185neu to inhibit mammary carcinogenesis in Her-2/neu transgenic BALB/c mice Gene Therapy 2001 8: 447–452

    Article  CAS  PubMed  Google Scholar 

  21. Lachman LB et al. DNA vaccination against neu reduces breast cancer incidence and metastasis in mice Cancer Gene Ther 2001 8: 259–268

    Article  CAS  PubMed  Google Scholar 

  22. Reilly RT et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice Cancer Res 2000 60: 3569–3576

    CAS  PubMed  Google Scholar 

  23. Pupa SM et al. Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination Gene Therapy 2001 8: 75–79

    Article  CAS  PubMed  Google Scholar 

  24. Marzo AL et al. Tumor-specific CD4+ T cells have a major ‘post-licensing’ role in CTL mediated anti-tumor immunity J Immunol 2000 165: 6047–6055

    Article  CAS  PubMed  Google Scholar 

  25. Wang RF . The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity Trends Immunol 2001 22: 269–276

    Article  PubMed  Google Scholar 

  26. Schirmbeck R, Böhm W, Reimann J . DNA vaccination primes MHC class I-restricted, Simian virus 40 large tumor antigen-specific CTL in H-2d mice that reject syngeneic tumors J Immunol 1996 157: 3550–3558

    CAS  PubMed  Google Scholar 

  27. Ross HM et al. Priming for T-cell-mediated rejection of established tumors by cutaneous DNA immunization Clin Cancer Res 1997 3: 2191–2196

    CAS  PubMed  Google Scholar 

  28. Schreurs MWJ, De Boer AJ, Figdor CG, Adema GJ . Genetic vaccination against the melanocyte lineage-specific antigen gp100 induces cytotoxic T lymphocyte-mediated tumor protection Cancer Res 1998 58: 2509–2514

    CAS  PubMed  Google Scholar 

  29. Bellone M et al. Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma J Immunol 2000 165: 2651–2656

    Article  CAS  PubMed  Google Scholar 

  30. Hanson HL et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy Immunity 2000 13: 265–276

    Article  CAS  PubMed  Google Scholar 

  31. Irvine KR, Rao JB, Rosenberg SA, Restifo NP . Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases J Immunol 1996 156: 238–245

    CAS  PubMed  Google Scholar 

  32. DeLeo AB et al. Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma J Exp Med 1977 146: 720–734

    Article  CAS  PubMed  Google Scholar 

  33. Nishikawa H et al. Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity Proc Natl Acad Sci USA 2001 98: 14571–14576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Pel A, De Plaen E, Boon T . Selection of highly transfectable variant from mouse mastocytoma P815 Somat Cell Mol Genet 1985 11: 467–475

    Article  CAS  PubMed  Google Scholar 

  35. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector Gene 1991 108: 193–200

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda H et al. Mutated mitogen-activated protein kinase: a tumor rejection antigen of mouse sarcoma Proc Natl Acad Sci USA 1997 94: 6375–6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Power CA et al. A valid ELISPOT assay for enumeration of ex vivo, antigen-specific, IFNγ-producing T cells J Immunol Meth 1999 227: 99–107

    Article  CAS  Google Scholar 

  38. Altman JD et al. Phenotypic analysis of antigen-specific T lymphocytes Science 1996 274: 94–96

    Article  CAS  PubMed  Google Scholar 

  39. Whelan JA et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent J Immunol 1999 163: 4342–4348

    CAS  PubMed  Google Scholar 

  40. Udono H, Levey DL, Srivastava PK . Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo Proc Natl Acad Sci USA 1994 91: 3077–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang LJ et al. Bone marrow-derived dendritic cells incorporate and process hydrophobized polysaccharide/oncoprotein complex as antigen presenting cells Int J Oncol 1999 14: 695–701

    CAS  PubMed  Google Scholar 

  42. Julius MH, Simpson E, Herzenberg LA . A rapid method for the isolation of functional thymus-derived murine lymphocytes Eur J Immunol 1973 3: 645–649

    Article  CAS  PubMed  Google Scholar 

  43. Nakayama E et al. Definition of a unique cell surface antigen of mouse leukemia RL male 1 by cell-mediated cytotoxicity Proc Natl Acad Sci USA 1979 76: 3486–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Megumi Goto and Mr Shoichi Kita who provided excellent assistance and useful information. This work was supported in part by grants from the Scientific Research on Priority Areas (C) from the Ministry of Education, Culture, Sports Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, K., Yasutomi, Y., Watanabe, M. et al. HER2 peptide-specific CD8+ T cells are proportionally detectable long after multiple DNA vaccinations. Gene Ther 9, 879–888 (2002). https://doi.org/10.1038/sj.gt.3301707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301707

Keywords

This article is cited by

Search

Quick links