Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models

Abstract

A gene-directed enzyme pro-drug therapy (GDEPT) based on purine nucleoside phosphorylase (PNP), that converts the prodrug, fludarabine to 2-fluoroadenine, has been described, but studies are limited compared with other GDEPTs. We investigated the in vitro and in vivo efficacies of PNP-GDEPT for treating androgen-independent (AI) prostate cancer. The PNP gene controlled by Rous sarcoma virus (RSV) constitutive promoter was delivered using a recombinant ovine adenovirus vector (OAdV220) that uses a different receptor from human adenovirus type 5. In vitro, OAdV220 provided increased transgene expression over a comparable human Ad5 vector in infected AI, murine RM1 prostate cancer cells. Subsequent in vivo testing was therefore confined to OAdV220. Transduction of RM1 cells with OAdV220 before implantation in immunocompetent mice dramatically inhibited subcutaneous (s.c.) tumor growth when fludarabine phosphate was administered systemically and increased mouse survival in a dose-dependent manner. In tumor-bearing C57BL/6 mice, a single intratumoral injection of OAdV220 produced detectable PNP activity for at least 6 days and with prodrug, retarded the growth of aggressive RM1 s.c. tumors by 35% at day 14. There was a consistent trend to reduction of pre-established intraprostatic RM1 tumors. A similar regimen induced significant therapeutic efficacy in human PC3 xenografts. Thus, ovine adenovirus-mediated GDEPT using the PNP system was effective in vivo against AI prostate cancers, the aggressive murine RM1, and the human PC3 lines. Methods that improve viral dissemination and stimulate the immune system in vivo may further improve efficacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parker SH, Tong T, Bolden S, Wingo PA . Cancer statistics 1996 CA Cancer J Clin 1996 46: 5–27

    Article  CAS  PubMed  Google Scholar 

  2. Landis SH . Murray T, Bolden S, Wingo PA. Cancer statistics, 1998 CA Cancer J Clin 1998 48: 6–29

    Article  CAS  PubMed  Google Scholar 

  3. Alexianu M, Weiss GH . Radical prostatectomy versus brachytherapy for early-stage prostate cancer J Endourol 2000 14: 325–328

    Article  CAS  PubMed  Google Scholar 

  4. Dahm P et al. Outcome profiles of locoregional disease after radical prostatectomy and radiotherapy World J Urol 2000 18: 173–178

    Article  CAS  PubMed  Google Scholar 

  5. Denis L, Murphy GP . Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer Cancer (Phila) 1993 72: 3888–3895

    Article  CAS  Google Scholar 

  6. Hrouda D, Dalgleish AG . Gene therapy for prostate cancer Gene Therapy 1996 3: 845–852

    CAS  PubMed  Google Scholar 

  7. Russell PJ et al. Prostate cancer gene therapy Australasian Biotechnology 1998 8: 99–106

    Google Scholar 

  8. Palapattu GS, Naitoh J, Belldegrun AS . Gene therapy for prostate cancer. New perspectives on an old problem Urologic Clinics Nth America 1999 26: 353–363

    Article  CAS  Google Scholar 

  9. Vieweg J et al. Immunotherapy of prostate cancer in the Dunning rat model – use of cytokine gene modified tumor vaccines Cancer Res 1994 54: 1760–1765

    CAS  PubMed  Google Scholar 

  10. Ko S-C et al. Molecular therapy with recombinant p53 adenovirus to an androgen-independent, metastatic human prostate cancer model Hum Gene Ther 1996 7: 1683–1691

    Article  CAS  PubMed  Google Scholar 

  11. Miyake H, Tolcher A, Gleave ME . Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model Cancer Res 1999 59: 4030–4034

    CAS  PubMed  Google Scholar 

  12. Chen S-HC et al. Combination gene therapy for liver metastasis of colon carcinoma in vivo Proc Natl Acad Sci USA 1995 92: 2577–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eastham JA et al. Prostate cancer gene therapy: Herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models Hum Gene Ther 1996 7: 515–523

    Article  CAS  PubMed  Google Scholar 

  14. Greenberg N et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice Mol Endocrinol 1994 8: 230–239

    CAS  PubMed  Google Scholar 

  15. Kasper A et al. Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene J Biol Chem 1994 269: 31763–31769

    CAS  PubMed  Google Scholar 

  16. Hughes BW et al. Bystander killing of melanoma cells using the human tyrosinase promoter to express the Escherichia coli purine nucleoside phosphorylase gene Cancer Res 1995 55: 3339–3345

    CAS  PubMed  Google Scholar 

  17. Brookes DE et al. Relative activity and specificity of promoters from prostate-expressed genes Prostate 1998 35: 8–26

    Article  Google Scholar 

  18. Martiniello-Wilks R et al. In vivo gene therapy for prostate cancer: preclinical evaluation of two different enzyme-prodrug systems delivered by identical adenovirus vectors Hum Gene Ther 1998 9: 1617–1626

    Article  CAS  PubMed  Google Scholar 

  19. Watt F et al. A transcriptional enhancer of the prostate-specific membrane antigen gene Genomics 2001 73: 243–254

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells Cancer Res 1997 57: 2559–2563

    CAS  PubMed  Google Scholar 

  21. Douglas JT et al. Targeted gene delivery by tropism-modified adenoviral vectors Nat Biotechnol 1996 14: 1574–1578

    Article  CAS  PubMed  Google Scholar 

  22. Watkins SJ, Mesyanzhinov VV, Kurochkina LP, Hawkins RE . The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery Gene Therapy 1997 4: 1004–1012

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds PN, Dimitriev I, Curiel DT . Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector Gene Therapy 1999 6: 1336–1339

    Article  CAS  PubMed  Google Scholar 

  24. Romanczuk H et al. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice Hum Gene Ther 1999 10: 2615–2626

    Article  CAS  PubMed  Google Scholar 

  25. Hermann JR et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial Hum Gene Ther 1999 10: 1239–1249

    Article  Google Scholar 

  26. Berges RR et al. Implication of cell kinetic changes during progression of human prostatic cancer Clin Cancer Res 1995 1: 473–480

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parker WB et al. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase Hum Gene Ther 1997 8: 1637–1644

    Article  CAS  PubMed  Google Scholar 

  28. Parker WB et al. Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells Biochem Pharmacol 1998 55: 1673–1681

    Article  CAS  PubMed  Google Scholar 

  29. Sorscher EJ et al. Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines Gene Therapy 1994 1: 233–238

    CAS  PubMed  Google Scholar 

  30. Lockett LJ, Molloy PL, Russell PJ, Both GW . Relative efficiency of tumor cell killing in vitro by two enzyme-prodrug systems delivered by identical adenovirus vectors Clin Cancer Res 1997 3: 2075–2080

    CAS  PubMed  Google Scholar 

  31. Bramson JL, Hitt M, Gauldie J, Graham FL . Pre-existing immunity to adenovirus does not prevent tumor regression following intratumoral administration of a vector expressing IL-12 but inhibits virus dissemination Gene Therapy 1997 4: 1069–1076

    Article  CAS  PubMed  Google Scholar 

  32. Ilan Y et al. Oral tolerization to adenoviral proteins permits repeated adenovirus-mediated gene therapy in rats with pre-existing immunity to adenoviruses Hepatology 1998 27: 1368–1376

    Article  CAS  PubMed  Google Scholar 

  33. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery Curr Opin Biotechnol 1999 10: 440–447

    Article  CAS  PubMed  Google Scholar 

  34. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  35. Tomko RP, Xu RL, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nemerow GR . Cell receptors involved in adenovirus entry Virology 2000 274: 1–4

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann C et al. Ovine adenovirus vectors overcome pre-existing humoral immunity against human adenoviruses in vivo J Virol 1999 73: 6930–6936

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu ZZ, Both GW . Altered tropism of an ovine adenovirus carrying the fiber protein cell binding domain of human adenovirus type 5 Virology 1997 248: 156–163

    Article  Google Scholar 

  39. Khatri A, Xu ZZ, Both GW . Gene expression by atypical recombinant ovine adenovirus vectors during abortive infection of human and animal cells in vitro Virology 1997 239: 226–237

    Article  CAS  PubMed  Google Scholar 

  40. Thompson TC, Southgate J, Kitchener G, Land H . Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted model Cell 1989 5: 917–930

    Article  Google Scholar 

  41. Hall SJ et al. Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer Int J Cancer 1997 70: 183–187

    Article  CAS  PubMed  Google Scholar 

  42. Hall SJ et al. Induction of potent antitumor natural killer cell activity by herpes simplex virus thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer Cancer Res 1998 58: 3221–3225

    CAS  PubMed  Google Scholar 

  43. Yamamoto T, Jay G, Pastan I . Unusual features in the nucleotide sequence of a cDNA clone derived from the common region of avian sarcoma virus messenger RNA Proc Natl Acad Sci USA 1980 77: 176–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loser P et al. Ovine adenovirus vectors promote efficient gene delivery in vivo Gene Ther Mol Biol 1999 4: 33–43

    Google Scholar 

  45. Secrist JA et al. Gene therapy of cancer: activation of nucleoside prodrugs with E. coli purine nucleoside phosphorylase Nucleosides Nucleotides 1999 18: 745–757

    Article  CAS  PubMed  Google Scholar 

  46. Xu ZZ et al. An ovine adenovirus vector lacks transforming ability in cells that are transformed by AD5 E1A/B sequences Virology 2000 270: 162–172

    Article  CAS  PubMed  Google Scholar 

  47. Plunkett WF et al. ludarabine: pharmacokinetics, mechanisms of action and rationales for combination therapies Semin Oncol 1993 20: 2–12

    CAS  PubMed  Google Scholar 

  48. Hutton JJ et al. Phase I clinical investigation of 9-beta-D-arabinofuranosyl-2-fluoroadenine 5’-monophosphate (NSC 312887), a new purine antimetabolite Cancer Res 1984 44: 4183–4186

    CAS  PubMed  Google Scholar 

  49. Snyder FF, Lukey T . Kinetic considerations for the regulation of adenosine and deoxyadenosine metabolism in mouse and human tissues based on a thymocyte model Biochem Biophys Acta 1982 696: 299–307

    CAS  PubMed  Google Scholar 

  50. Carson DA, Kaye J, Wasson DB . Differences in deoxyadenosine metabolism in human and mouse lymphocytes J Immunol 1980 124: 8–12

    CAS  PubMed  Google Scholar 

  51. Vrati S et al. Construction and transfection of ovine adenovirus genomic clones to rescue modified viruses Virology 1996 220: 200–203

    Article  CAS  PubMed  Google Scholar 

  52. Boyle DB et al. Characterisation of Australian ovine adenovirus isolates Vet Microbiol 1994 41: 281–291

    Article  CAS  PubMed  Google Scholar 

  53. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy J Virol 1996 70: 7498–7509

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson-McKay JE, Both GW, Simpson G . Regio- and stereo-selective synthesis of 6-methyl-9-(2-deoxy-β-D-erythro-pentofuranosyl)purine Nucleotides Nucleosides 1996 15: 1307–1313

    Article  CAS  Google Scholar 

  55. Russell PJ et al. Bladder cancer xenografts: a model of tumor cell heterogeneity Cancer Res 1986 46: 2035–2040

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Peter Russell, Department of Anatomical Pathology, Royal Prince Alfred Hospital, Sydney for conducting histological analyses. Funding for this study was provided, in part, by FH Faulding and Co Limited.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voeks, D., Martiniello-Wilks, R., Madden, V. et al. Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models. Gene Ther 9, 759–768 (2002). https://doi.org/10.1038/sj.gt.3301698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301698

Keywords

This article is cited by

Search

Quick links