Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector

Abstract

We have utilized a recombinant adeno-associated viral (AAV) vector carrying the angiostatin gene as an anti-angiogenesis strategy to treat the malignant brain tumor in a C6 glioma/Wistar rat model. Angiostatin, as a potent angiogenesis inhibitor, shows high promises as an anti-cancer drug through the inhibition of tumor neovessel formation. However, sustained in vivo protein delivery is required to achieve the therapeutic effects. The AAV vector has been proven to be able to deliver sustained and high-level gene expression in vivo, and therefore, is well suited to such a purpose. In this study, we implanted 5 × 105 C6 glioma cells into the rat brain 7 days before gene therapy. Intratumoral injection of a high-titer AAV-angiostatin vector has rendered efficacious tumor suppression and resulted in long-term survival in 40% of the treated rats, whereas the control AAV-GFP vector did not have any therapeutic benefits. In addition, we have investigated the combined gene therapy of an adenoviral vector carrying the suicidal thymidine kinase gene along with the AAV-angiostatin vector. The combined therapy offered the best tumor-suppressive effects and increased long-term survival to 55% in the treated rats. Our study has demonstrated the potential of using AAV as a safe and effective vector for anti-angiogenic gene therapy of brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Levy M.L. et al. Neurosurgery, molecular medicine, and the Pandora-panacea continuum: future implications for glioma therapy? Clin Neurosurg 1992 39: 421 421

    CAS  PubMed  Google Scholar 

  2. Avgeropoulos N.G., Batchelor T.T. . New treatment strategies for malignant gliomas Oncologist 1999 4: 209 209

    CAS  PubMed  Google Scholar 

  3. Lang F.F. et al. Adenovirus-mediated p53 gene therapy for human gliomas Neurosurgery 1999 45: 1093 1093

    Article  CAS  PubMed  Google Scholar 

  4. Burton E.A., Glorioso J.C. . Multi-modal combination gene therapy for malignant glioma using replication-defective HSV vectors Drug Discov Today 2001 6: 347 347

    Article  CAS  PubMed  Google Scholar 

  5. Moriuchi S. et al. HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma Gene Therapy 2000 7: 1483 1483

    Article  CAS  PubMed  Google Scholar 

  6. Niranjan A. et al. Effective treatment of experimental glioblastoma by HSV vector-mediated TNF alpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration Mol Ther 2000 2: 114 114

    Article  CAS  PubMed  Google Scholar 

  7. Marconi P. et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors Mol Ther 2000 1: 71 71

    Article  CAS  PubMed  Google Scholar 

  8. Krisky D.M. et al. Deletion of multiple immediate–early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons Gene Therapy 1998 5: 1593 1593

    Article  CAS  PubMed  Google Scholar 

  9. Moriuchi S. et al. Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase Cancer Res 1998 58: 5731 5731

    CAS  PubMed  Google Scholar 

  10. Lund E.L. et al. Tumor angiogenesis – a new therapeutic target in gliomas Acta Neurol Scand 1998 97: 52 52

    Article  CAS  PubMed  Google Scholar 

  11. Folkman J. . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990 82: 4 4

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J. . Angiogenesis in cancer, vascular, rheumatoid and other disease Nat Med 1995 1: 27 27

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J. . Angiogenesis and angiogenesis inhibition: an overview EXS 1997 79: 1 1

    CAS  PubMed  Google Scholar 

  14. Folkman J. . Angiogenesis inhibitors generated by tumors Mol Med 1995 1: 120 120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Folkman J. . New perspectives in clinical oncology from angiogenesis research Eur J Cancer 1996 32A: 2534 2534

    Article  CAS  PubMed  Google Scholar 

  16. O'Reilly M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma Cell 1994 79: 315 315

    Article  CAS  PubMed  Google Scholar 

  17. O'Reilly M.S. et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth Cold Spring Harb Symp Quant Biol 1994 59: 471 471

    Article  CAS  PubMed  Google Scholar 

  18. O'Reilly M.S. . Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth EXS 1997 79: 273 273

    CAS  PubMed  Google Scholar 

  19. Kirsch M. et al. Angiostatin suppresses malignant glioma growth in vivo Cancer Res 1998 58: 4654 4654

    CAS  PubMed  Google Scholar 

  20. Tanaka T. et al. Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA Cancer Res 1998 58: 3362 3362

    CAS  PubMed  Google Scholar 

  21. Cao Y. et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases J Clin Invest 1998 101: 1055 1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harris A.L. . Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy Rec Res Cancer Res 1998 152: 341 341

    Article  CAS  Google Scholar 

  23. Cao Y. . Therapeutic potentials of angiostatin in the treatment of cancer Haematologica 1999 84: 643 643

    CAS  PubMed  Google Scholar 

  24. Griscelli F. et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest Proc Natl Acad Sci USA 1998 95: 6367 6367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen J.T. . Adeno-associated virus and other potential vectors for angiostatin and endostatin gene therapy Adv Exp Med Biol 2000 465: 457 457

    Article  CAS  PubMed  Google Scholar 

  26. Stack M.S. et al. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation Biochem J 1999 340: 77 77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito H. et al. Endothelial progenitor cells as putative targets for angiostatin Cancer Res 1999 59: 5875 5875

    CAS  PubMed  Google Scholar 

  28. Samulski R.J. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 EMBO J 1991 10: 3941 3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flotte T.R. et al. Gene expression from adeno-associated virus vectors in airway epithelial cells Am J Respir Cell Mol Biol 1992 7: 349 349

    Article  CAS  PubMed  Google Scholar 

  30. Flotte T.R., Afione S.A., Zeitlin P.L. . Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration Am J Respir Cell Mol Biol 1994 11: 517 517

    Article  CAS  PubMed  Google Scholar 

  31. Duan D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue J Virol 1998 72: 8568 8568

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaplitt M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain Nat Genet 1994 8: 148 148

    Article  CAS  PubMed  Google Scholar 

  33. Xiao X. et al. Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity Brain Res 1997 756: 76 76

    Article  CAS  PubMed  Google Scholar 

  34. Mizuno M. et al. Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration Jpn J Cancer Res 1998 89: 76 76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kay M.A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector Nat Genet 2000 24: 257 257

    Article  CAS  PubMed  Google Scholar 

  36. Rabinowitz J.E., Samulski R.J. . Building a better vector: the manipulation of AAV virions Virology 2000 278: 301 301

    Article  CAS  PubMed  Google Scholar 

  37. Gura T. . Hemophilia. After a setback, gene therapy progresses gingerly Science 2001 291: 1692 1692

    Article  CAS  PubMed  Google Scholar 

  38. Okada H. et al. Gene therapy against an experimental glioma using adeno-associated virus vectors Gene Therapy 1996 3: 957 957

    CAS  PubMed  Google Scholar 

  39. Qazilbash M.H. et al. Cancer gene therapy using a novel adeno-associated virus vector expressing human wild-type p53 Gene Therapy 1997 4: 675 675

    Article  CAS  PubMed  Google Scholar 

  40. Su H. et al. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice Proc Natl Acad Sci USA 1997 94: 13891 13891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen J.T. et al. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy Cancer Res 1998 58: 5673 5673

    CAS  PubMed  Google Scholar 

  42. Liu D.W. et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer J Virol 2000 74: 2888 2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joe Y.A. et al. Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3 Int J Cancer 1999 82: 694 694

    Article  CAS  PubMed  Google Scholar 

  44. Chen Q.R. et al. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice Cancer Res 1999 59: 3308 3308

    CAS  PubMed  Google Scholar 

  45. Griscelli F. et al. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model Proc Natl Acad Sci USA 2000 97: 6698 6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Joki T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy Nat Biotechnol 2001 19: 35 35

    Article  CAS  PubMed  Google Scholar 

  47. Huang X. et al. Soluble recombinant endostatin purified from Escherichia coli: antiangiogenic activity and antitumor effect Cancer Res 2001 61: 478 478

    CAS  PubMed  Google Scholar 

  48. Plate K.H., Mennel H.D. . Vascular morphology and angiogenesis in glial tumors Exp Toxicol Pathol 1995 47: 89 89

    Article  CAS  PubMed  Google Scholar 

  49. Haberman R.P., McCown T.J., Samulski R.J. . Inducible long-term gene expression in brain with adeno-associated virus gene transfer Gene Therapy 1998 5: 1604 1604

    Article  CAS  PubMed  Google Scholar 

  50. Ferrari F.K. et al. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors J Virol 1996 70: 3227 3227

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fisher K.J. et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis J Virol 1996 70: 520 520

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yokoyama Y. et al. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth Cancer Res 2000 60: 2190 2190

    CAS  PubMed  Google Scholar 

  53. Scappaticci F.A. et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice Mol Ther 2001 3: 186 186

    Article  CAS  PubMed  Google Scholar 

  54. Li J. et al. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy Gene Therapy 1999 6: 74 74

    Article  CAS  PubMed  Google Scholar 

  55. Xiao X., Li J., Samulski R.J. . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus J Virol 1998 72: 2224 2224

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li J., Samulski R.J., Xiao X. . Role for highly regulated rep gene expression in adeno-associated virus vector production J Virol 1997 71: 5236 5236

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, HI., Lin, SZ., Chiang, YH. et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther 9, 2–11 (2002). https://doi.org/10.1038/sj.gt.3301616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301616

Keywords

This article is cited by

Search

Quick links