Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo

Abstract

Chitosan is a natural cationic linear polymer that has recently emerged as an alternative nonviral gene delivery system. We have established the relationships between the structure and the properties of chitosan-pDNA polyplexes in vitro. Further, we have compared polyplexes of ultrapure chitosan (UPC) of preferred molecular structure with those of optimised polyethylenimine (PEI) polyplexes in vitro and after intratracheal administration to mice in vivo. Chitosans in which over two out of three monomer units carried a primary amino group formed stable colloidal polyplexes with pDNA. Optimized UPC and PEI polyplexes protected the pDNA from serum degradation to approximately the same degree, and they gave a comparable maximal transgene expression in 293 cells. In contrast to PEI, UPC was non toxic at escalating doses. After intratracheal administration, both polyplexes distributed to the mid-airways, where transgene expression was observed in virtually every epithelial cell, using a sensitive pLacZ reporter containing a translational enhancer element. However, the kinetics of gene expression differed – PEI polyplexes induced a more rapid onset of gene expression than UPC. This was attributed to a more rapid endosomal escape of the PEI polyplexes. Although this resulted in a more efficient gene expression with PEI polyplexes, UPC had an efficiency comparable to that of commonly used cationic lipids. In conclusion, this study provides insights into the use of chitosan as a gene delivery system. It emphasises that chitosan is a nontoxic alternative to other cationic polymers and it forms a platform for further studies of chitosan-based gene delivery systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hudde T et al. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium Gene Therapy 1999 6: 939–943

    Article  CAS  PubMed  Google Scholar 

  2. Fischer D et al. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity Pharm Res 1999 16: 1273–1279

    Article  CAS  PubMed  Google Scholar 

  3. Pollard H et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells J Biol Chem 1998 273: 7507–7511

    Article  CAS  PubMed  Google Scholar 

  4. Tang MX, Szoka FC . The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes Gene Therapy 1997 4: 823–832

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine–DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  6. Chan CK, Jans DA . Enhancement of polylysine-mediated transfer infection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence Hum Gene Ther 1999 10: 1695–1702

    Article  CAS  PubMed  Google Scholar 

  7. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer Gene Therapy 1997 4: 961–968

    Article  CAS  PubMed  Google Scholar 

  8. Brazeau GA, Attia S, Poxon S, Hughes JA . In vitro myotoxicity of selected cationic macromolecules used in non-viral gene delivery Pharm Res 1998 15: 680–684

    Article  CAS  PubMed  Google Scholar 

  9. Pack DW, Putnam D, Langer R . Design of imidazole-containing endosomolytic biopolymers for gene delivery Biotechnol Bioeng 2000 67: 217–223

    Article  CAS  PubMed  Google Scholar 

  10. Fajac I, Briand P, Monsigny M, Midoux P . Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells Hum Gene Ther 1999 10: 395–406

    Article  CAS  PubMed  Google Scholar 

  11. Diebold SS et al. Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells J Biol Chem 1999 274: 19087–19094

    Article  CAS  PubMed  Google Scholar 

  12. Leong KW et al. DNA-polycation nanospheres as nonviral gene delivery vehicles J Control R 1998 53: 183–193

    Article  CAS  Google Scholar 

  13. Goldman CK et al. In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer Nat Biotechnol 1997 15: 462–466

    Article  CAS  PubMed  Google Scholar 

  14. Erbacher P et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability Pharm Res 1998 15: 1332–1339

    Article  CAS  PubMed  Google Scholar 

  15. Arai K, Kinumaki T, Fujita T . Toxicity of chitosan Bull Tokai Reg Fish Lab 1968 43: 89–94

    Google Scholar 

  16. Illum L . Chitosan and its use as a pharmaceutical excipient Pharm Res 1998 15: 1326–1331

    Article  CAS  PubMed  Google Scholar 

  17. Roy K, Mao HQ, Huang SK, Leong KW . Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy Nat Med 1999 4: 387–391

    Article  Google Scholar 

  18. Remy JS et al. Gene transfer with lipospermines and polyethylenimines Adv Drug Del Rev 1998 30: 85–95

    Article  CAS  Google Scholar 

  19. MacLaughlin FC et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery J Control Rel 1998 56: 259–272

    Article  CAS  Google Scholar 

  20. Schipper NG, Varum KM, Artursson P . Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells Pharm Res 1996 13: 1686–1692

    Article  CAS  PubMed  Google Scholar 

  21. Luo D, Saltzman WM . Synthetic DNA delivery systems Nat Biotechnol 2000 18: 33–37

    Article  CAS  PubMed  Google Scholar 

  22. Godbey WT, Wu KK, Mikos AG . Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle J Biomed Mater Res 1999 45: 268–275

    Article  CAS  PubMed  Google Scholar 

  23. Turunen MP et al. Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes Gene Therapy 1999 6: 6–11

    Article  CAS  PubMed  Google Scholar 

  24. Abdallah B et al. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine Hum Gene Ther 1996 7: 1947–1954

    Article  CAS  PubMed  Google Scholar 

  25. Bragonzi A et al. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs Gene Therapy 2000 7: 1753–1760

    Article  CAS  PubMed  Google Scholar 

  26. Berglund P et al. Enhancing immune responses using suicidal DNA vaccines Nat Biotechnol 1998 16: 562–565

    Article  CAS  PubMed  Google Scholar 

  27. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Godbey W, Wu K, Hirasaki G, Mikos A . Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency Gene Therapy 1999 6: 1380–1388

    Article  CAS  PubMed  Google Scholar 

  29. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrod O . 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans) Carbohydr Res 1991 217: 19–27

    Article  PubMed  Google Scholar 

  30. Ottøy MH, Vårum KM, Smidsrød O . Preparative and analytical size-exclusion chromatography of chitosans Carbohydr Polym 1996 29: 17–24

    Article  Google Scholar 

  31. Errington N, Harding SE, Varum KM, Illum L . Hydrodynamic characterization of chitosans varying in degree of acetylation Int J Biol Macromol 1993 15: 113–117

    Article  CAS  PubMed  Google Scholar 

  32. Bloomfield VA . DNA condensation by multivalent cations Biopolymers 1997 44: 269–282

    Article  CAS  PubMed  Google Scholar 

  33. Melnikova Y et al. Relationship between the physical structure of chitosan–DNA complexes and transfection efficiency 2000 (in preparation)

  34. Nordtveit RJ, Vårum KM, Smidsrød O . Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme Carbohydr Polym 1996 29: 163–167

    Article  CAS  Google Scholar 

  35. Carreno-Gomez B, Duncan R . Evaluation of the biological properties of soluble chitosan and chitosan microspheres Int J Pharm 1997 148: 231–240

    Article  CAS  Google Scholar 

  36. Weber M, Moller K, Welzeck M, Schorr J . Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells Biotechniques 1995 19: 930–940

    CAS  PubMed  Google Scholar 

  37. Ferrari S et al. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo Gene Therapy 1997 4: 1100–1106

    Article  CAS  PubMed  Google Scholar 

  38. Boucher RC . Status of gene therapy for cystic fibrosis lung disease J Clin Invest 1999 103: 441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schipper NG et al. Chitosans as absorption enhancers of poorly absorbable drugs. 3: Influence of mucus on absorption enhancement Eur J Pharm Sci 1999 8: 335–343

    Article  CAS  PubMed  Google Scholar 

  40. Perricone MA et al. Inhibitory effect of cystic fibrosis sputum on adenovirus-mediated gene transfer in cultured epithelial cells Hum Gene Ther 2000 11: 1997–2008

    Article  CAS  PubMed  Google Scholar 

  41. Alton E, Geddes D . Cystic fibrosis clinical trials Adv Drug Deliv Rev 1998 30: 205–217

    Article  CAS  PubMed  Google Scholar 

  42. Thompson JF, Hayes LS, Lloyd DB . Modulation of firefly luciferase stability and impact on studies of gene regulation Gene 1991 103: 171–177

    Article  CAS  PubMed  Google Scholar 

  43. Smith RL, Geller AI, Escudero KW, Wilcox CL . Long-term expression in sensory neurons in tissue culture from herpes simplex virus type 1 (HSV-1) promoters in an HSV-1-derived vector J Virol 1995 69: 4593–4599

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pillai R et al. Ultrasonic nebulization of cationic lipid-based gene delivery systems for airway administration Pharm Res 1998 15: 1743–1747

    Article  CAS  PubMed  Google Scholar 

  45. Deshpande D et al. Target specific optimization of cationic lipid-based systems for pulmonary gene therapy Pharm Res 1998 15: 1340–1347

    Article  CAS  PubMed  Google Scholar 

  46. Lee ER et al. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung Hum Gene Ther 1996 7: 1701–1717

    Article  CAS  PubMed  Google Scholar 

  47. Yew NS et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes Hum Gene Ther 1999 10: 223–234

    Article  CAS  PubMed  Google Scholar 

  48. Domard A . pH and c.d. measurements on a fully deacetylated chitosan: application to CuII–polymer interactions Int J Biol Macromol 1987 9: 98–104

    Article  CAS  Google Scholar 

  49. Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M . Endosomes, lysosomes: their implication in gene transfer Adv Drug Deliv Rev 2000 41: 201–208

    Article  CAS  PubMed  Google Scholar 

  50. Zabner J et al. Cellular and molecular barriers to gene transfer by a cationic lipid J Biol Chem 1995 270: 18997–19007

    Article  CAS  PubMed  Google Scholar 

  51. McCluskie MJ et al. Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA Antisense Nucleic Acid Drug Dev 1998 8: 401–414

    Article  CAS  PubMed  Google Scholar 

  52. Godbey WT, Wu KK, Mikos AG . Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery Proc Natl Acad Sci USA 1999 96: 5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Smedt SC, Demeester J, Hennink WE . Cationic polymer based gene delivery systems Pharm Res 2000 17: 113–126

    Article  CAS  PubMed  Google Scholar 

  54. Pouton CW et al. Polycation–DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids J Control Rel 1998 53: 289–299

    Article  CAS  Google Scholar 

  55. Tubulekas I, Berglund P, Fleeton M, Liljestrom P . Alphavirus expression vectors and their use as recombinant vaccines: a minireview Gene 1997 190: 191–195

    Article  CAS  PubMed  Google Scholar 

  56. Vårum KM et al. Advances in Chitin and Chitosan Elsevier Applied Science: London 1992 pp 127–136

    Book  Google Scholar 

  57. Artursson P . Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells J Pharm Sci 1990 79: 476–482

    Article  CAS  PubMed  Google Scholar 

  58. Felgner PL et al. Nomenclature for synthetic gene delivery systems Hum Gene Ther 1997 8: 511–512

    Article  CAS  PubMed  Google Scholar 

  59. Bellare JR, Davis HT, Scriven LE, Talmon Y . Controlled environment vitrification system (CEVS): an improved sample preparation technique J Electron Microsc Tech 1988 10: 87–111

    Article  CAS  PubMed  Google Scholar 

  60. Dubochet J et al. Cryo-electron microscopy of vitrified specimens Q Rev Biophys 1988 21: 129–228

    Article  CAS  PubMed  Google Scholar 

  61. Vårum KM et al. Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans Biochim Biophys Acta 1996 1291: 5–15

    Article  PubMed  Google Scholar 

  62. Ochiya T et al. New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet Nat Med 1999 5: 707–710

    Article  CAS  PubMed  Google Scholar 

  63. Bragonzi A et al. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs Gene Therapy 1999 6: 1995–2004

    Article  CAS  PubMed  Google Scholar 

  64. Felgner JH et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations J Biol Chem 1994 269: 2550–2561

    CAS  PubMed  Google Scholar 

  65. Lappalainen K et al. Comparison of cell proliferation and toxicity assays using two cationic liposomes Pharm Res 1994 11: 1127–1131

    Article  CAS  PubMed  Google Scholar 

  66. Oudrhiri N et al. Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo Proc Natl Acad Sci USA 1997 94: 1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Felgner PL . Improvements in cationic liposomes for in vivo gene transfer Hum Gene Ther 1996 7: 1791–1793

    Article  CAS  PubMed  Google Scholar 

  68. Weiss DJ, Liggitt D, Clark JG . In situ histochemical detection of beta-galactosidase activity in lung: assessment of X-Gal reagent in distinguishing lacZ gene expression and endogenous beta-galactosidase activity Hum Gene Ther 1997 13: 1545–1554

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Valentis, Inc., Burlingame, CA, USA for the gift of pCMV-CAT, pCMV-Luc and fluorescently labelled pDNA, Dr Göran Ocklind, Dr Lucia Lazorova, Tapio Nikkilä, Anna Johansson and Björn Jansson for skilful technical assistance and Professor Godfried Roomans for help with analysis of lung sections. This work was supported by a grant from the Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köping-Höggård, M., Tubulekas, I., Guan, H. et al. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8, 1108–1121 (2001). https://doi.org/10.1038/sj.gt.3301492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301492

Keywords

This article is cited by

Search

Quick links