Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tissue-specific gene therapy directed to tumor angiogenesis

Abstract

Gene therapy directed specifically to the vascular wall, particularly to angiogenic endothelial cells is a prerequisite in vascular disease treatment. Angiogenesis is a major feature in many pathological conditions including wound healing, solid tumors, developing metastases, ischemic heart diseases and diabetic retinopathy. In the present study we developed a tissue-specific gene therapy to the angiogenic blood vessels of tumor metastasis using an adeno-based vector containing the murine preproendothelin-1 (PPE-1) promoter. Genes activated by the PPE-1 promoter were highly expressed in bovine aortic endothelial cells in vitro. Systemic injection of the adenoviral vectors AdPPE-1-luciferase and AdCMV-luciferase to normal C57BL/6 mice, resulted in higher activity of PPE-1 promoter compared with CMV promoter in the aorta and vascularized tissues such as heart, kidney, lung and pancreas. Systemic administration of the adenoviral vector, in mice bearing Lewis lung carcinoma, resulted in high and specific activity of PPE-1 in the new vasculature of primary tumors and lung metastasis. Cellular distribution of the delivered gene revealed highest expression of GFP in angiogenic endothelial cells of the metastasis. We expect that this approach of ‘vascular-directed’ gene therapy will be applicable to both vascular diseases and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Keshet E, Ben-Sasson SA . Anticancer drug targets: approaching angiogenesis J Clin Inv 1999 104: 1497–1501

    Article  CAS  Google Scholar 

  2. Schulick AH et al. Endothelium-specific in vivo gene transfer Circ Res 1995 77: 475–485

    Article  CAS  Google Scholar 

  3. Channon KM, George SE . Improved adenoviral vectors: cautious optimism for gene therapy Q J Med 1997 90: 105–109

    Article  CAS  Google Scholar 

  4. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Nat Cancer Inst 1997 88: 21–39

    Article  Google Scholar 

  5. Kaplan JM et al. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung Hum Gene Ther 1997 8: 45–56

    Article  CAS  Google Scholar 

  6. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration Hum Gene Ther 1997 8: 37–44

    Article  CAS  Google Scholar 

  7. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  Google Scholar 

  8. Nabel EG et al. Recombinant platelet-derived growth factor B gene expression in porcine arteries induces intimal hyperplasia in vivo J Clin Inv 1993 91: 1822–1829

    Article  CAS  Google Scholar 

  9. Nabel EG et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo Nature 1993 362: 844–846

    Article  CAS  Google Scholar 

  10. Nabel EG et al. Direct transfer of transforming growth factor β1 gene into arteries stimulates fibrocellular hyperplasia Proc Natl Acad Sci USA 1993 90: 10759–10763

    Article  CAS  Google Scholar 

  11. Lemarchand P et al. Adenovirus-mediated transfer of recombinant human (1- antitrypsin cDNA to human endothelial cells Proc Natl Acad Sci USA 1992 89: 6482–6486

    Article  CAS  Google Scholar 

  12. Lemarchand P, Jones M, Yamada I, Crystal RG . In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors Circ Res 1993 72: 1132–1138

    Article  CAS  Google Scholar 

  13. Tanaka T, Cao Y, Folkman J, Fine HA . Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA Cancer Res 1998 58: 3362–3369

    CAS  Google Scholar 

  14. Ozaki K et al. Use of von Willebrand factor promoter to transduce suicidal gene to human endothelial cells, HUVEC Hum Gene Ther 1996 7: 1483–1490

    Article  CAS  Google Scholar 

  15. Cowan PJ et al. Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter Transplantation 1996 62: 155–160

    Article  CAS  Google Scholar 

  16. Korhonen J et al. Endothelial-specific gene expression directed by the tie gene promoter in vivo Blood 1995 86: 1828–1835

    CAS  Google Scholar 

  17. Jaggar RT, Chan HY, Harris A, Bicknell R . Endothelial cell-specific expression of tumor necrosis factor alpha from KDR or E-selectin promoters following retroviral delivery Hum Gene Ther 1997 8: 2239–2247

    Article  CAS  Google Scholar 

  18. Harats D et al. Targeting gene expression to the vascular wall in transgenic mice using the murine preproendothelin-1 promoter J Clin Inv 1995 95: 1335–1344

    Article  CAS  Google Scholar 

  19. Bu X, Quertermous T . Idenification of endothelin-1 cell specific regulatory region in the murine endothelin-1 gene J Biol Chem 1997 272: 32613–32622

    Article  CAS  Google Scholar 

  20. McMillen MA, Sumpio BF . Endothelins: polyfunctional cytokines J Am Coll Surg 1995 180: 621–637

    CAS  PubMed  Google Scholar 

  21. Rubanyi GM, Polokoff MA . Endothelins: molecular biology, biochemistry, pharmacology, physiology, and patophysiology Pharmacol Rev 1994 46: 325–402

    CAS  PubMed  Google Scholar 

  22. Hu J, Discher DJ, Bishopric NH, Webster KA . Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand Biochem Biophys Res Comm 1998 245: 894–899

    Article  CAS  Google Scholar 

  23. Matsuura A et al. Vascular endothelial growth factor increases endothelin converting enzyme expression in vascular endothelial cells Biochem Biophys Res comm 1997 235: 713–716

    Article  CAS  Google Scholar 

  24. Matsuura A et al. Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression Hypertension 1998 32: 89–95

    Article  CAS  Google Scholar 

  25. Salani D et al. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization Am J Pathol 2000 157: 1703–1711

    Article  CAS  Google Scholar 

  26. Bagnato A et al. Autocrine actions of endothelin-1 as growth factor in human ovarian carcinoma cells Clin Canc Res 1995 1: 1059–1066

    CAS  Google Scholar 

  27. Bagnato A, Tecce R, Di Castro V, Catt KJ . Activation of mitogenic signaling by endothelin 1 in ovarian carcinoma cells Cancer Res 1997 57: 1306–1311

    CAS  Google Scholar 

  28. O'Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma Cell 1994 79: 315–328

    Article  CAS  Google Scholar 

  29. Jäger U, Zhao Y, Porter CD . Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences J Virol 1999 73: 9702–9709

    PubMed  PubMed Central  Google Scholar 

  30. Fechner H et al. Expression of coxsackie adenovirus receptor and alpha v-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers Gene Therapy 1999 6: 1520–1535

    Article  CAS  Google Scholar 

  31. Brooks PC, Clark RAF, Cheresh DA . Requirement of vascular integrin αvβ3 for angiogenesis Science 1994 264: 569–571

    Article  CAS  Google Scholar 

  32. Cheresh DA . Death to a blood vessel, death to a tumor Nat Med 1998 4: 395–396

    Article  CAS  Google Scholar 

  33. Shenk T . Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields Virology Raven Publishers: Philadelphia 1996 2111–2148

    Google Scholar 

  34. Yang Z, Krasnici N, Luscher TF . Endothelin-1 potentiates human smooth muscle cell growth to PDGF: effect of ETA and ETB receptor blockade Circulation 1999 100: 5–8

    Article  CAS  Google Scholar 

  35. Liefeldt L et al. Transcriptional regulation of endothelin-1 by erythropoietin in endothelial cells J Cardiovasc Pharmacol 1998 31 (Suppl. 1): S464–S466

    Article  Google Scholar 

  36. Folkman J . Antiangiogenic gene therapy Proc Natl Acad Sci USA 1998 95: 9064–9066

    Article  CAS  Google Scholar 

  37. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression Nat Med 1995 1: 149–153

    Article  CAS  Google Scholar 

  38. Boehm T, Folkman J, Browder T, O'Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance Nature 1997 390: 404–407

    Article  CAS  Google Scholar 

  39. Lin P et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2 Proc Natl Acad Sci USA 1998 95: 8829–8834

    Article  CAS  Google Scholar 

  40. Becker TC et al. Use of recombinant adenovirus for metabolic engineering of mammalian cells. In: Roth M (ed) Methods in Cell Biology Academic Press: New York 1994 161–189

    Google Scholar 

  41. Seijffers R et al. Increase in PDX-1 levels suppresses insulin gene expression in RIN 1046–38 cells Endocrinology 1999 140: 3311–3317

    Article  CAS  Google Scholar 

  42. Ellis LM et al. Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src J Biol Chem 1998 273: 1052–1057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr J Roitelman for his scientific assistance. This research was supported by the Ministry of Science and Art Fund grant No. 6735195; Israel Cancer Association through the estate of the late Yvon Heymann; Recanati Foundation, Tel-Aviv University grant No. 01370902.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varda-Bloom, N., Shaish, A., Gonen, A. et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther 8, 819–827 (2001). https://doi.org/10.1038/sj.gt.3301472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301472

Keywords

This article is cited by

Search

Quick links