Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy

Abstract

Retroviral vector-mediated expression of the homeoboxgene, HoxB4, in hematopoietic cells has been reported to mediate a benign expansion of gene-modified hematopoietic stem and precursor cells in vivo. In the present study, we used a novel coexpression strategy for coordinated expression of HoxB4 along with a cytoplasmic protein from a retroviral vector. The novel coexpression strategy, based on cotranslational protein separation mediated by the 2A sequence of foot-and-mouth disease virus (FMDV), allows an indirect quantification of HoxB4 expression levels when inserting a reporter such as the enhanced green fluorescent protein (GFP) in the retroviral vector. Presence of the 2A sequence did not interfere with the correct subcellular localization of HoxB4 (nuclear) and GFP (cytoplasmic), nor with the titer of bicistronic vectors, and mediated functional long-term coexpression (at least 1 year) of GFP and HoxB4 after transplantation of transduced mouse bone marrow cells in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sauvageau G et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo Genes Dev 1995 9: 1753–1765

    Article  CAS  PubMed  Google Scholar 

  2. Thornsteindottir U, Sauvageau G, Humphries RK . Enhanced in vivo regenerative potential of HoxB4-transduced hematopoietic stem cells with regulation of their pool size Blood 1999 8: 2605–2612

    Google Scholar 

  3. van Oostveen J et al. The role of homeobox genes in normal hematopoiesis and hematological malignancies Leukemia 1999 13: 1675–1690

    Article  CAS  PubMed  Google Scholar 

  4. Krosl J et al. Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1 Oncogene 1998 16: 3403–3412

    Article  CAS  PubMed  Google Scholar 

  5. Krosl J, Sauvageau G . AP-1 complex is effector of Hox-induced cellular proliferation and transformation Oncogene 2000 19: 5134–5141

    Article  CAS  PubMed  Google Scholar 

  6. Beslu N et al. The N-terminal amino acids 31–100 and the homeodomain delineate regions of HOXb4 involved in HSC expansion Blood 2000 96: 496a (Abstr. 2135)

    Google Scholar 

  7. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism Cell 1984 39: 449–467

    Article  CAS  PubMed  Google Scholar 

  8. Borman AM, Le Mercier P, Girard M, Kean KM . Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins Nucleic Acids Res 1997 25: 925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belsham GJ, Sonenberg N . RNA–protein interactions in regulation of picornavirus RNA translation Microbiol Rev 1996 60: 499–511

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sommergruber W et al. Polypeptide 2A of human rhinovirus type 2: identification as a protease and characterization by mutational analysis Virology 1989 169: 68–77

    Article  CAS  PubMed  Google Scholar 

  11. Toyoda H et al. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein Cell 1986 45: 761–770

    Article  CAS  PubMed  Google Scholar 

  12. Ryan MD et al. A model for non-stoichiometric, co-translational protein scission in eukaryotic ribosomes Bioorganic Chem 1999 27: 55–79

    Article  CAS  Google Scholar 

  13. Donelly LLD et al. The cleavage activities of aphtovirus and cardiovirus 2A proteins J Gen Virol 1997 78: 13–21

    Article  Google Scholar 

  14. Ryan MD, Drew J . Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein EMBO J 1994 134: 928–933

    Article  Google Scholar 

  15. Percy N, Barclay WS, Garcia-Sastre A, Palese P . Expression of a foreign protein by influenza A virus J Virol 1994 68: 4486–4492

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt M, Rethwilm A . Replicating foamy virus-based vectors directing high level expression of foreign genes Virology 1995 210: 167–178

    Article  CAS  PubMed  Google Scholar 

  17. de Felipe P et al. Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy Gene Therapy 1999 6: 198–208

    Article  CAS  PubMed  Google Scholar 

  18. de Felipe P, Izquierdo M . Tricistronic and tetracistronic retroviral vectors for gene transfer Hum Gen Ther 2000 11: 1921–1931

    Article  CAS  Google Scholar 

  19. Borman AM, Bailly J-L, Girard M, Kean KM . Picornavirus internal ribosomal entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro Nucleic Acids Res 1995 23: 3656–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ziegler E et al. Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin J Virol 1995 69: 3465–3474

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de Quinto LS, Martinez-Salas E . Involvement of the aphtovirus RNA region located between the two functional AUGs in start codon selection Virology 1999 255: 324–336

    Article  Google Scholar 

  22. Fehse B et al. CD34 splice variant: an attractive marker for selection of gene-modified cells Mol Ther 2000 1: 448–456

    Article  CAS  PubMed  Google Scholar 

  23. Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease Science 2000 288: 669–672

    Article  CAS  PubMed  Google Scholar 

  24. Abonour R et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells Nat Med 2000 6: 652–658

    Article  CAS  PubMed  Google Scholar 

  25. Malech HL et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease Proc Natl Acad Sci USA 1997 94: 12133–12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu P, Lutzko C, Stewart AK, Dube ID . Retrovirus-mediated gene transfer intro human hematopoietic stem cells J Mol Med 1998 76: 184–192

    Article  CAS  PubMed  Google Scholar 

  27. Ramesh N et al. High-titer bicistronic retroviral vectors employing foot-and-mouth disease virus internal ribosome entry site Nucleic Acids Res 1996 24: 2697–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grez M, Akgun E, Hilberg F, Ostertag W . Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells Proc Natl Acad Sci USA 1990 87: 9202–9206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ausubel F et al. Current Protocols in Molecular Biology John Wiley & Sons: New York 1998

    Google Scholar 

  30. Harlow E, Lane D . Antibodies – A Laboratory Manual Cold Spring Harbor Laboratories: New York 1988 pp 367–419

  31. Gouilleux F, Wakao H, Mundt M, Groner B . Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription EMBO J 1994 13: 4361–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Bundesministerium für Bildung und Forschung’, BMBF 01KV9811 and BMBF 5008410. We thank Cordula Gruettner and Goekhan Arman-Kalcek for excellent technical assistance. We are also grateful to Keith Humphries and Michael Niepmann for providing us with the cDNAs of human HoxB4 and the FMDV-OK1 IRES, respectively.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klump, H., Schiedlmeier, B., Vogt, B. et al. Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy. Gene Ther 8, 811–817 (2001). https://doi.org/10.1038/sj.gt.3301447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301447

Keywords

This article is cited by

Search

Quick links