Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

DNA binding chelates for nonviral gene delivery imaging

Abstract

Noninvasive in vivo monitoring of gene delivery would provide a critically important information regarding the spatial distribution, local concentration, kinetics of removal and/or biodegradation of the expression vector. We developed a novel approach to noninvasive gene delivery imaging using heterobifunctional peptide-based chelates (PBC) bearing double-stranded DNA-binding groups and a technetium-binding amino acid motif. One of such chelates: Gly-Cys(Acm)-Gly-Cys(Acm)-Gly-Lys4-Lys-(N-ε-[4-(psoralen-8-yloxy)]butyrate)-NH2 has been characterized and labeled with reduced 99mtc pertechnetate (oxotechnetate). the psoralen moiety (a dna binding group of pbc) allowed linking to double-stranded dna upon short-term irradiation with the near uv range light (>320 nm). Approximately 30–40% of added 99mTc-labeled PBC was nonextractable and co-eluted with a model pCMV-GFP vector during the gel-permeation chromatography. Nuclear imaging of ‘naked’ DNA and DNA complexes with lipid-based transfection reagents (‘lipoplexes’) has been performed after systemic or local administration of 99mTc-PBC-labeled DNA in mice. Imaging results were corroborated with the biodistribution using 99mTc-PBC and 32P-labeled DNA and lipoplexes. A markedly different biodistribution of 99mTc PBC-labeled DNA and lipoplexes was observed with the latter being rapidly trapped in the liver, spleen and lung. 99mTc PBC-DNA was used as an imaging tracer during in vivo transfection of B16 melanoma by local injection of ‘naked’ 99mTc PBC-DNA and corresponding lipoplexes. As demonstrated by nuclear imaging, 99mTc PBC-DNA lipoplexes showed a slower elimination from the site of injection than 99mTc PBC-DNA alone. This result correlated with a higher expression of marker mRNA and green fluorescent protein as determined using RT-PCR and immunohistochemistry, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blasberg RG, Tjuvajev JG . Herpes simplex virus thymidine kinase as a marker/reporter gene for PET imaging of gene therapy Quart J Nucl Med 1999 43: 163–169

    CAS  Google Scholar 

  2. Bogdanov A Jr, Weissleder R . The development of in vivo imaging systems to study gene expression Trends Biotechnol 1998 16: 5–10

    Article  PubMed  Google Scholar 

  3. Moats RA, Fraser SE, Meade TJ . A ‘smart’ magnetic resonance imaging agent that reports on specific enzymatic activity Angew Chem IntEd 1997 36: 726–731

    Article  CAS  Google Scholar 

  4. de Marco G et al. MR imaging of gene delivery to the central nervous system with an artificial vector Radiology 1998 208: 65–71

    Article  CAS  PubMed  Google Scholar 

  5. Hawrylak N et al. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants Exp Neurol 1993 121: 181–192

    Article  CAS  PubMed  Google Scholar 

  6. Schellingerhout D et al. Mapping the in vivo distribution of Herpes simplex virions Hum Gene Ther 1998 9: 1543–1549

    Article  CAS  PubMed  Google Scholar 

  7. Zinn KR et al. Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob (serotype 5) Gene Therapy 1998 5: 798–808

    Article  CAS  PubMed  Google Scholar 

  8. Simonova M et al. Targeting of green fluorescent protein expression to the cell surface Biochem Biophys Res Commun 1999 262: 638–642

    Article  CAS  PubMed  Google Scholar 

  9. Gia O et al. Sequence specificity of psoralen photobinding to DNA: a quantitative approach Biochemistry 1992 31: 11818–11822

    Article  CAS  PubMed  Google Scholar 

  10. Kanne D et al. Psoralen-deoxyribonucleic acid photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5′8-trimethylpsoralen Biochemistry 1982 21: 861–871

    Article  CAS  PubMed  Google Scholar 

  11. Moore A et al. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis Microvasc Res 1998 56: 145–153

    Article  CAS  PubMed  Google Scholar 

  12. Bogdanov A Jr, Kayne L, Weissleder R . Graft copolymers as carriers for systemic delivery of expression vectors Proc Intl Symp Control Rel Bioact Mater 1998 25: 214–215

    Google Scholar 

  13. Felgner PL et al. Nomenclature for synthetic gene delivery systems (editorial) Hum Gene Ther 1997 8: 511–512

    Article  CAS  PubMed  Google Scholar 

  14. Felgner PL . Prospects for synthetic self-assembling systems in gene delivery (interview) J Gene Med 1999 1: 290–292

    Article  CAS  PubMed  Google Scholar 

  15. Felgner PL . DNA vaccines Curr Biol 1998 8: R551–R553

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh SS et al. Liver-directed gene therapy: promises, problems and prospects at the turn of the century J Hepatol 2000 32: 238–252

    Article  CAS  PubMed  Google Scholar 

  17. Sandhu JS, Keating A, Hozumi N . Human gene therapy Crit Rev Biotechnol 1997 17: 307–326

    Article  CAS  PubMed  Google Scholar 

  18. Wolff JA . Naked DNA transport and expression in mammalian cells Neuromusc Dis 1997 7: 314–318

    Article  CAS  PubMed  Google Scholar 

  19. Felgner PL . Nonviral strategies for gene therapy Sci Am 1997 276: 102–106

    Article  CAS  PubMed  Google Scholar 

  20. Mahato RI . Non-viral peptide-based approaches to gene delivery J Drug Target 1999 7: 249–268

    Article  CAS  PubMed  Google Scholar 

  21. Zelphati O et al. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA Hum Gene Ther 1999 10: 15–24

    Article  CAS  PubMed  Google Scholar 

  22. Plank C et al. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery Hum Gene Ther 1996 7: 1437–1446

    Article  CAS  PubMed  Google Scholar 

  23. Zelphati O, Szoka FC Jr . Mechanism of oligonucleotide release from cationic liposomes Proc Natl Acad Sci USA 1996 93: 11493–11498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y, Szoka FC Jr . Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection Biochemistry 1996 35: 5616–5623

    Article  CAS  PubMed  Google Scholar 

  25. Sixou S et al. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET) Nucleic Acids Res 1994 22: 662–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chin DJ et al. Rapid nuclear accumulation of injected oligodeoxyribonucleotides New Biol 1990 2: 1091–1100

    CAS  PubMed  Google Scholar 

  27. Zelphati O et al. PNA-dependent gene chemistry: stable coupling of peptides and oligonucleotides to plasmid DNA Biotechniques 2000 28: 304–310, 312–314, 316

    Article  Google Scholar 

  28. Neves C et al. Novel method for covalent fluorescent labeling of plasmid DNA that maintains structural integrity of the plasmid Bioconj Chem 2000 11: 51–55

    Article  CAS  Google Scholar 

  29. Meyer KB et al. Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics Gene Therapy 1995 2: 450–460

    CAS  PubMed  Google Scholar 

  30. Levy MY et al. Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood Gene Therapy 1996 3: 201–211

    CAS  PubMed  Google Scholar 

  31. Mardirossian G et al. In vivo hybridization of technetium-99m-labeled peptide nucleic acid (PNA) J Nucl Med 1997 38: 907–913

    CAS  PubMed  Google Scholar 

  32. Winnard P Jr et al. Preparation and use of NHS-MAG3 for technetium-99m labeling of DNA Nucl Med Biol 1997 24: 425–432

    Article  PubMed  Google Scholar 

  33. Herman JR et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial Hum Gene Ther 1999 10: 1239–1249

    Article  CAS  PubMed  Google Scholar 

  34. O'Malley BW Jr, Li D . Combination gene therapy for salivary gland cancer Ann New York Acad Sci 1998 842: 163–170

    Article  Google Scholar 

  35. Wollenberg B et al. Gene therapy – phase I trial for primary untreated head and neck squamous cell cancer (HNSCC) UICC stage II–IV with a single intratumoral injection of hIL-2 plasmids formulated in DOTMA/Chol Hum Gene Ther 1999 10: 141–147

    Article  CAS  PubMed  Google Scholar 

  36. Li D et al. Combination surgery and nonviral interleukin 2 gene therapy for head and neck cancer Clin Cancer Res 1999 5: 1551–1556

    CAS  PubMed  Google Scholar 

  37. Schuler M et al. A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer Hum Gene Ther 1998 9: 2075–2082

    Article  CAS  PubMed  Google Scholar 

  38. Lang FF et al. Adenovirus-mediated p53 gene therapy for human gliomas Neurosurgery 1999 45: 1093–1104

    Article  CAS  PubMed  Google Scholar 

  39. Bogdanov A Jr, Simonova M, Weissleder R . Design of metal-binding green fluorescent protein variants Biochim Biophys Acta 1998 1397: 56–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Drs Maria Simonova and James Basilion for advice on 32P-labeling. Acknowledged is also the participation of Dr Lee Kayne in the early feasibility experiments. The work was supported in part by NIH: 5RO1 NS35258–03 (RW); 5RO1 CA74424–01 (AB) and 1R21 DK55713–01 (CT).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, A., Tung, CH., Bredow, S. et al. DNA binding chelates for nonviral gene delivery imaging. Gene Ther 8, 515–522 (2001). https://doi.org/10.1038/sj.gt.3301410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301410

Keywords

This article is cited by

Search

Quick links