Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes

Abstract

The use of tumor antigen loaded dendritic cells (DC) is one of the most promising approaches to induce a tumor specific immune response in vivo. Several strategies have been designed to load DC with tumor antigens. In this study, we investigated the delivery of in vitro transcribed RNA and plasmid DNA into monocyte-derived, ie non-proliferating human DC, using several nonviral transfection methods including electroporation and lipofection. Green fluorescent protein (GFP) was used as a reporter gene and influenza matrix protein 1 (M1) as a model antigen for HLA class I restricted antigen presentation. Using electroporation in combination with DNA or with RNA, up to 11% of DC were GFP-positive. Using liposomes as a vehicle for DNA transport up to 10% of the DC were GFP-positive. A significant increase in transfection efficacy, of up to 20%, was observed when GFP RNA was used in combination with liposomes. Importantly, the RNA transfected DC retained their typical morphological and immunophenotypical characteristics. In addition, DC transfected with M1 RNA were able to stimulate autologous peripheral M1-specific memory cytotoxic T lymphocytes (CTL), as well as M1-specific CTL clones. Furthermore, comparison of DNA-transfected DC with RNA-transfected DC revealed the latter to be far better stimulators of antigen-specific T cells. This RNA transfection technique consequently represents a very promising tool for future immunotherapy strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Romero P et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes J Exp Med 1998 188: 1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Speiser DE et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes J Exp Med 1999 190: 775–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee PP et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients Nature Med 1999 5: 677–685

    Article  CAS  PubMed  Google Scholar 

  4. Doyle A et al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer J Exp Med 1985 161: 1135–1151

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  6. Steinman RM . Dendritic cells. In: Paul WE (ed) Fundamental Immunology Lippincott-Raven: Philadelphia 1999 pp 547–573

    Google Scholar 

  7. Schuler G, Steinman RM . Dendritic cells as adjuvants for immune-mediated resistance to tumors J Exp Med 1997 186: 1183–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayordomo JI et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity Nature Med 1995 1: 1297–1302

    Article  CAS  PubMed  Google Scholar 

  9. Hsu FJ et al. Vaccination of patients with B cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  10. Murphy G et al. Phase I clinical trial: T cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen Prostate 1996 29: 371–380

    Article  CAS  PubMed  Google Scholar 

  11. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  12. Marchand M et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGe-3 and presented by HLA-A1 Int J Cancer 1999 80: 219–230

    Article  CAS  PubMed  Google Scholar 

  13. Thurner B et al. Intracutaneous vaccination with Mage-3.A1 peptide-pulsed mature monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma J Exp Med 1999 190: 1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhodapkar MV et al. Rapid generation of broad T cell immunity in humans after a single injection of mature dendritic cells J Clin Invest 1999 104: 173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo J Exp Med 1996 184: 465–472

    Article  CAS  PubMed  Google Scholar 

  16. van Elsas A et al. Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes from healthy donors against stably HLA-A*0201-binding peptides from the Melan-A/MART-1 self antigen Eur J Immunol 1996 26: 1683–1689

    Article  CAS  PubMed  Google Scholar 

  17. Choudhury A et al. Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia Blood 1997 89: 1133–1142

    CAS  PubMed  Google Scholar 

  18. Porgador A, Snyder D, Gilboa E . Induction of antitumor immunity using bone marrow-generated dendritic cells J Immunol 1996 156: 2918–2926

    CAS  PubMed  Google Scholar 

  19. Gabrilovich DI, Ciernik IF, Carbone DP . Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts Cell Immunol 1996 170: 101–110

    Article  CAS  PubMed  Google Scholar 

  20. Boon T, van der Bruggen P . Human tumor antigens recognized by T lymphocytes J Exp Med 1996 183: 725–729

    Article  CAS  PubMed  Google Scholar 

  21. Reeves ME et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene Cancer Res 1996 56: 5672–5677

    CAS  PubMed  Google Scholar 

  22. Szabolcs P et al. Retrovirally transduced human dendritic cells express a normal phenotype and potent T-cell stimulatory capacity Blood 1997 90: 2160–2167

    CAS  PubMed  Google Scholar 

  23. Verhasselt B et al. Retrovirally transduced CD34++ human cord blood cells generate T cells expressing high levels of the retroviral encoded green fluorescent protein marker in vitro Blood 1998 91: 431–440

    CAS  PubMed  Google Scholar 

  24. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  26. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  27. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells Blood 1998 91: 392–398

    CAS  PubMed  Google Scholar 

  28. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM . Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  29. Di Nicola M et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors Cancer Gene Ther 1998 5: 350–356

    CAS  PubMed  Google Scholar 

  30. Engelmayer J et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion J Immunol 1999 163: 6762–6768

    CAS  PubMed  Google Scholar 

  31. Drillen R, Spehner D, Bohbot A, Hanau D . Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes Virology 2000 268: 471–481

    Article  Google Scholar 

  32. Tüting T et al. Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-a J Immunol 1998 160: 1139–1147

    PubMed  Google Scholar 

  33. Alijagic S et al. Dendritic cells generated from peripheral blood transfected with human tyrosinase induce specific T cell activation Eur J Immunol 1995 25: 3100–3107

    Article  CAS  PubMed  Google Scholar 

  34. Van Tendeloo VF et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor-, but not monocyte-derived dendritic cells Gene Therapy 1998 5: 700–707

    Article  CAS  PubMed  Google Scholar 

  35. Ashley DM et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1997 186: 1177–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nair SK et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA Nat Biotech 1998 16: 364–369

    Article  CAS  Google Scholar 

  37. Nair SK et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA Int J Cancer 1999 82: 121–124

    Article  CAS  PubMed  Google Scholar 

  38. Boczkowski D et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells Cancer Res 2000 60: 1028–1034

    CAS  PubMed  Google Scholar 

  39. Hoerr I, Obst R, Rammensee HG, Jung G . In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies Eur J Immunol 2000 30: 1–7

    Article  CAS  PubMed  Google Scholar 

  40. Heiser A et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTLresponses in vitro J Immunol 2000 164: 5508–5514

    Article  CAS  PubMed  Google Scholar 

  41. Jonuleit H et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions Eur J Immunol 1997 27: 3135–3142

    Article  CAS  PubMed  Google Scholar 

  42. Dunbar PR et al. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood Curr Biol 1998 8: 413–416

    Article  CAS  PubMed  Google Scholar 

  43. Herr W et al. The use of computer-assisted video image analysis for the quantification of CD8+ T lymphocytes producing tumor necrosis factor alpha spots in response to peptide antigens J Immunol Methods 1997 203: 141–152

    Article  CAS  PubMed  Google Scholar 

  44. Strobel I et al. Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells using an avian influenza virus vector Hum Gene Ther 2000 (in press

Download references

Acknowledgements

We thank Waltraud Leisgang for technical assistance. We gratefully acknowledge Armin Bender for setting up the ELISPOT technique in the laboratory, for many helpful comments and fruitful discussions. We thank Manfred B Lutz and Heidi C Joao for critical reading of the manuscript. This work was supported by the Bundesministerium für Bildung und Forschung, grant No. 01GE9601, Forschungsverbünde zur somatischen Gentherapie.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobel, I., Berchtold, S., Götze, A. et al. Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther 7, 2028–2035 (2000). https://doi.org/10.1038/sj.gt.3301326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301326

Keywords

This article is cited by

Search

Quick links