Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes

Abstract

Development of nonviral delivery systems is progressing toward a transfection efficiency sufficient to affect metabolic and neoplastic diseases in humans. Nevertheless, inadequate transfection efficiency of target cells with current nonviral systems still limits the utility of this therapy. In the current study, we have determined that a co-polymer of histidine and lysine (H-K) enhances the transfection efficiency of liposomes, a leading nonviral system. We found that in the absence of serum, the addition of this polymer increased transfection as much as 10-fold in comparison with the liposome:DNA complex alone. More impressively, the co-polymer in the presence of serum increased transfection efficiency up to 100-fold. Furthermore, in vivo expression of luciferase in a tumor increased 15-fold with the addition of H-K polymer to the liposome:plasmid DNA complexes. Without liposomes, the H-K polymer had little to no effect on transfection efficiency. We anticipate that further modifications of this co-polymer will yield molecules with both increased complexity and transfection efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA transfection procedure Proc Natl Acad Sci USA 1987 84: 7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J . Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA Proc Natl Acad Sci USA 1989 86: 6982–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Remy JS, Sirlin C, Vierling P, Behr J-P . Gene transfer with a series of lipophilic DNA-binding molecules Bioconjugate Chem 1994 5: 647–654

    Article  CAS  Google Scholar 

  4. Nabel GL et al. Direct gene transfer with DNA liposome complexes in melanoma expression, biological activity, and lack of toxicity in humans Proc Natl Acad Sci USA 1993 90: 11307–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu N, Ligitt D, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 209–211

    Article  CAS  PubMed  Google Scholar 

  6. Thierry AR et al. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice Proc Natl Acad Sci USA 1995 92: 9742–9746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marshall J . The trouble with vectors Science 1995 269: 1051–1055

    Article  CAS  Google Scholar 

  8. Xu M et al. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity Hum Gene Ther 1997 8: 177–185

    Article  CAS  PubMed  Google Scholar 

  9. Yang JP, Huang L . Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA Gene Therapy 1997 4: 950–967

    Article  CAS  PubMed  Google Scholar 

  10. Liu F, Qi H, Huang L, Liu, D . Factor controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration Gene Therapy 1997 4: 517–523

    Article  CAS  PubMed  Google Scholar 

  11. Stewart MJ et al. Gene transfer in vivo with DNA–liposome complexes: safety and acute toxicity in mice Hum Gene Ther 1992 3: 267–275

    Article  CAS  PubMed  Google Scholar 

  12. Felgner JH et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations J Biol Chem 1994 269: 2550–2561

    CAS  PubMed  Google Scholar 

  13. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery Nat Biotechnol 1997 15: 167–173

    Article  CAS  PubMed  Google Scholar 

  14. Hong K, Zheng W, Baker A, Papahadjopoulos D . Stabilization of cationic liposome–plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery FEBS Lett 1997 400: 233–237

    Article  CAS  PubMed  Google Scholar 

  15. Li S, Rizzo MA, Bhattacharya S, Huang L . Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery Gene Therapy 1998 5: 930–937

    Article  CAS  PubMed  Google Scholar 

  16. Gao X, Huang L . Potentiation of cationic liposome-mediated gene delivery by polycations Biochemistry 1996 35: 1027–1036

    Article  CAS  PubMed  Google Scholar 

  17. Sorgi FL, Bhattacharya S, Huang L . Protamine sulfate enhances lipid-mediated gene transfer Gene Therapy 1997 4: 961–968

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  19. Toncheva V et al. Novel vectors for gene delivery formed by self-assembly of DNA with poly (L-lysine) grafted with hydrophilic polymers Biochim Biophys Acta 1998 1380: 354–368

    Article  CAS  PubMed  Google Scholar 

  20. Legendre JY, Szoka FC Jr . Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes Pharm Res 1992 9: 1235–1242

    Article  CAS  PubMed  Google Scholar 

  21. Ogris M et al. The size of DNA/transferrin–PEI complexes is an important factor for gene expression in cultured cells Gene Therapy 1998 5: 1425–1433

    Article  CAS  PubMed  Google Scholar 

  22. Wolfert MA, Seymour LW . Chloroquine and amphipathic peptide helices show synergistic transfection in vitro Gene Therapy 1998 5: 409–414

    Article  CAS  PubMed  Google Scholar 

  23. Erbacher P, Roche AC, Monsigny M, Midoux P . Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA/lactosylated polylysine complexes Exp Cell Res 1996 225: 186–194

    Article  CAS  PubMed  Google Scholar 

  24. Zauner W et al. Glycerol and polylysine synergize in their ability to rupture vesicular membranes: a mechanism for increased transferrin-polylysine-mediated gene transfer Exp Cell Res 1997 232: 137–145

    Article  CAS  PubMed  Google Scholar 

  25. Budker V et al. pH-sensitive cationic liposomes: a new synthetic virus-like vector Nat Biotechnol 1996 14: 760–764

    Article  CAS  PubMed  Google Scholar 

  26. Nidome T et al. Binding of cationic-helical peptides to plasmid DNA and their gene transfer abilities into cells J Biol Chem 1997 272: 15307–15312

    Article  Google Scholar 

  27. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kukowska-Latallo JF et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers Proc Natl Acad Sci USA 1996 93: 4897–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Remy JS, Behr JP . Gene transfer with multivalent synthetic vectors J Liposome Res 1996 6: 535–544

    Article  CAS  Google Scholar 

  30. Haensler J, Szoka FC Jr . Polyamidoamine cascade polymers mediate efficient transfection of cells in culture Bioconjug Chem 1993 4: 372–379

    Article  CAS  PubMed  Google Scholar 

  31. Midoux P, Monsigny M . Efficient gene transfer by histidylated polylysine/pDNA complexes Bioconjug Chem 1999 10: 406–411

    Article  CAS  PubMed  Google Scholar 

  32. Chen QR, Kumar D, Stass SA, Mixson AJ . Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice Cancer Res 1999 59: 3308–3312

    CAS  PubMed  Google Scholar 

  33. Cayot P, Tainturier G . The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination Anal Biochem 1997 249: 184–200

    Article  CAS  PubMed  Google Scholar 

  34. Snyder SL, Sobocinski P . An improved 2,4,6-trinitrobenzene-sulfonic acid method for the determination of amines Anal Biochem 1975 64: 284–288

    Article  CAS  PubMed  Google Scholar 

  35. Sherf BA, Wood KV . Luminometry for in vivo and in vitro reporting of firefly luciferase Promega Notes 1993 44: 18–23

    Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Amy Fulton, Edward Highsmith, and Robert Malone for their careful reading and useful comments concerning the manuscript. This work was supported by the National Institutes of Health (CA70394) and the Karl C Dod Charitable Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, QR., Zhang, L., Stass, S. et al. Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Ther 7, 1698–1705 (2000). https://doi.org/10.1038/sj.gt.3301294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301294

Keywords

This article is cited by

Search

Quick links