Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Cell-Based Therapy
  • Published:

Cell-Based Therapy

Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity

Abstract

The identification of dendritic cells (DC) as the major antigen-presenting cell type of the immune system, combined with the development of procedures for their ex vivo culture, has opened possibilities for tumour immunotherapy based on the transfer of recombinant tumour antigens to DC. It is anticipated that the most effective type of response would be the stimulation of specific, MHC class I restricted cytotoxic T lymphocytes capable of recognising and destroying tumour cells. In order to make this approach possible, methods must be developed for the transfer of recombinant antigen to the DC in such a way that they will initiate an MHC class I restricted response. Here, we demonstrate that murine DC infected with a recombinant fowlpox virus (rFWPV) vector stimulate a powerful, MHC class I restricted response against a recombinant antigen. A rFWPV containing the OVA gene was constructed and used to infect the DC line DC2.4. The infected DC2.4 cells were found to stimulate the T-T cell hybridoma line RF33.70, which responds specifically to the MHC class I restricted OVA peptide SIINFEKL. The stimulatory ability of the rFWPV-infected DC2.4 cells lasted for at least 72 h after infection and was eventually limited by proliferation of uninfected cells. By comparison, DC2.4 cells pulsed with synthetic SIINFEKL peptide stimulated RF33.70 well initially, but the stimulatory ability had declined to zero by 24 h after pulsing. FWPV infection of DC2.4 up-regulated MHC and costimulatory molecule expression. rFWPV was also found to infect both immature and mature human DC derived from cord blood CD34+ progenitors and express trangenes for up to 20 days after infection. We conclude that rFWPV shows promise as a vector for antigen gene transfer to DC in tumour immunotherapy protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Grabbe S, Beissert S, Schwarz T, Granstein RD . Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995 16: 117–121

    Article  CAS  PubMed  Google Scholar 

  2. Hart D . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  3. Reid CDL, Stackpoole A, Meager A, Tikerpae J . Interactions of tumor-necrosis-factor with granulocyte–macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell-growth in vitro from early bipotent CD34+ progenitors in human bone-marrow J Immunol 1992 149: 2681–2688

    CAS  PubMed  Google Scholar 

  4. Caux C, Dezutterdambuyant C, Schmitt D, Banchereau J . GM-CSF and TNF-alpha cooperate in the generation of dendritic langerhans cells Nature 1992 360: 258–261

    Article  CAS  PubMed  Google Scholar 

  5. Ravagnani F et al. Large-scale collection of circulating hematopoietic progenitors in cancer-patients treated with high-dose cyclophosphamide and recombinant human GM-CSF Eur J Cancer 1990 26: 562–564

    Article  CAS  PubMed  Google Scholar 

  6. Romani N et al. Proliferating dendritic cell progenitors in human blood J Exp Med 1994 180: 83–93

    Article  CAS  PubMed  Google Scholar 

  7. Paglia P, Chiodoni C, Rodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo J Exp Med 1996 183: 317–322

    Article  CAS  PubMed  Google Scholar 

  8. Porgador A, Gilboa E . Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes J Exp Med 1995 182: 255–260

    Article  CAS  PubMed  Google Scholar 

  9. Celluzzi CM et al. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity J Exp Med 1996 183: 283–287

    Article  CAS  PubMed  Google Scholar 

  10. Zarling AL, Johnson JG, Hoffman RW, Lee DR . Induction of primary human CD8+ T lymphocyte responses in vitro using dendritic cells J Immunol 1999 162: 5197–5204

    CAS  PubMed  Google Scholar 

  11. Hsu FJ et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nat Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  12. Tjoa B et al. Presentation of prostate tumor antigens by dendritic cells stimulates T-cell proliferation and cytotoxicity Prostate 1996 28: 65–69

    Article  CAS  PubMed  Google Scholar 

  13. Tsai V et al. Identification of subdominant CTL epitopes of the GP100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells J Immunol 1997 158: 1796–1802

    CAS  PubMed  Google Scholar 

  14. Christinck ER, Luscher MA, Barber BH, Williams DB . Peptide binding to class-I MHC on living cells and quantitation of complexes required for CTL lysis Nature 1991 352: 67–70

    Article  CAS  PubMed  Google Scholar 

  15. Kundig TM et al. Duration of TCR stimulation determines costimulatory requirement of T cells Immunity 1996 5: 41–52

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty NG et al. Emergence of regulatory CD4(+) T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines J Immunol 1999 162: 5576–5583

    CAS  PubMed  Google Scholar 

  17. Crystal RG . Transfer of genes to humans – early lessons and obstacles to success Science 1995 270: 404–410

    Article  CAS  PubMed  Google Scholar 

  18. Robinson HL, Torres CAT . DNA vaccines Semin Immunol 1997 9: 271–283

    Article  CAS  PubMed  Google Scholar 

  19. Tuting T, DeLeo AB, Lotze MT, Storkus WJ . Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or ‘self’ antigens induce antitumor immunity in vivo Eur J Immunol 1997 27: 2702–2707

    Article  CAS  PubMed  Google Scholar 

  20. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  21. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  22. Di-Nicola M et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors Cancer Gene Ther 1998 5: 350–356

    CAS  PubMed  Google Scholar 

  23. Ranieri E et al. Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination J Virol 1999 73: 10416–10425

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rea D et al. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset J Virol 1999 73: 10245–10253

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith GL, Binns MM (eds.) . Recombinant Poxviruses CRC Press: Boca Raton 1992

  26. Bronte V et al. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine Proc Natl Acad Sci USA 1997 94: 3183–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown M, et al. Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors Cancer Gene Ther 1999 6: 238–245

    Article  CAS  PubMed  Google Scholar 

  28. Tarpey I et al. Human cytotoxic T lymphocytes stimulated by endogenously processed human papillomavirus type 11 E7 recognise a peptide containing a HLA-A2 (A*0201) motif Immunol 1994 81: 222–227

    CAS  Google Scholar 

  29. Behbehani AM . The smallpox story: life and death of an old disease Microbiol Rev 1983 47: 455–509

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Picard O et al. Complication of intramuscular subcutaneous immune therapy in severely immune-compromised individuals J Acquir Immune Defic Syndr 1991 4: 641–643

    CAS  PubMed  Google Scholar 

  31. Redfield RR et al. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease New Engl J Med 1987 316: 673–676

    Article  CAS  PubMed  Google Scholar 

  32. Kim CJ et al. Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity Ann Surg Oncol 1998 5: 64–76

    Article  CAS  PubMed  Google Scholar 

  33. Taylor J, Paoletti E . Fowlpox virus as a vector for non-avian species Vaccine 1988 6: 466–468

    Article  CAS  PubMed  Google Scholar 

  34. Somogyi P, Frazier J, Skinner MA . Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells Virology 1993 197: 439–444

    Article  CAS  PubMed  Google Scholar 

  35. Wang M et al. Active immunotherapy of cancer with a non-replicating recombinant fowlpox virus encoding a model tumor-associated antigen J Immunol 1995 154: 4685–4692

    CAS  PubMed  Google Scholar 

  36. Condit RC, Motyczca A . Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus Virology 1981 113: 224–241

    Article  CAS  PubMed  Google Scholar 

  37. Smith GL . Virus strategies for evasion of the host response to infection Trends Microbiol 1994 2: 81–88

    Article  CAS  PubMed  Google Scholar 

  38. Smith GL et al. Vaccinia virus immune evasion Immunol Rev 1997 159: 137–154

    Article  CAS  PubMed  Google Scholar 

  39. Rock KL, Rothstein L, Gamble S . Generation of class I MHC-restricted T-T hybridomas J Immunol 1990 145: 804–811

    CAS  PubMed  Google Scholar 

  40. Herbst B et al. In vitro differentiation of CD34+ hematopoietic progenitor cells toward distinct dendritic cell subsets of the birbeck granule and MIIC-positive Langerhans cell and the interdigitating dendritic cell type Blood 1996 88: 2541–2548

    CAS  PubMed  Google Scholar 

  41. Albert ML, Sauter B, Bhardwaj N . Dendritic cells aquire antigen from apoptotic cells and induce class I-restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  42. Cooper JA, Moss B . In vitro translation of immediate early, early and late classes of RNA from vaccinia virus-infected cells Virology 1979 96: 368–380

    Article  CAS  PubMed  Google Scholar 

  43. McDonald WF, Crozel-Goudot V, Traktman P . Transient expression of the vaccinia virus DNA polymerase is an intrinsic feature of the early phase of infection and is unlinked to DNA replication and late gene expression J Virol 1992 66: 534–547

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pennington TH . Vaccinia virus polypeptide synthesis: sequential appearance and stability of pre- and post-replicative polypeptides J Gen Virol 1974 25: 433–444

    Article  CAS  PubMed  Google Scholar 

  45. Borysiewicz LK et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer Lancet 1996 347: 1523–1527

    Article  CAS  PubMed  Google Scholar 

  46. Tsang KY et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunised with recombinant vaccinia CEA vaccine J Natl Cancer Inst 1995 87: 982–990

    Article  CAS  PubMed  Google Scholar 

  47. Sanda MG et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer Urology 1999 53: 260–266

    Article  CAS  PubMed  Google Scholar 

  48. Wallack MK et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma. The final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial J Am Coll Surg 1998 187: 69–77

    Article  CAS  PubMed  Google Scholar 

  49. Mayr A, Hochstein-Mintzel V, Stickl H . Abstammung, eigenschaftenund Verwendung des attenuierten Vaccinia-Stammes MVA Infection 1975 3: 6–16

    Article  Google Scholar 

  50. Blanchard TJ, Alcami A, Andrea P, Smith GL . Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine J Gen Virol 1998 79: 1159–1167

    Article  CAS  PubMed  Google Scholar 

  51. Tomely F, Binns MM, Campbell J, Boursnell M . Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowlpox virus J Gen Virol 1988 69: 1025–1040

    Article  Google Scholar 

  52. Rooney JF, Wohlenberg C, Cremer KJ, Moss B . Immunization with a vaccinia virus recombinant expressing Herpes-Simplex Virus type-1 glycoprotein-D – long-term protection and effect of revaccination J Virol 1988 62: 1530–1534

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Irvine KR et al. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors J Natl Cancer Inst 1997 89: 1595–1601

    Article  CAS  PubMed  Google Scholar 

  54. Schneider J et al. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara Nature Med 1998 4: 397–402

    Article  CAS  PubMed  Google Scholar 

  55. Hodge JW, McLaughlin JP, Kantor JA, Schlom J . Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses Vaccine 1997 15: 759–768

    Article  CAS  PubMed  Google Scholar 

  56. Kent SJ et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus J Virol 1998 72: 10180–10188

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanke T et al. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope DNA prime-modified vaccinia virus Ankara boost vaccination J Virol 1999 73: 7524–7532

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen Z, Reznikoff G, Dranoff G, Rock KL . Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules J Immunol 1997 158: 2723–2730

    CAS  PubMed  Google Scholar 

  59. deWynter EA et al. CD34(+)AC133(+) cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors Stem Cells 1998 16: 387–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr K Rock (Dana Faber Cancer Institute, Boston, MA, USA) for the kind provision of the DC2.4 and RF33.70 cell lines, Dr Lorenz Rindisbacher and Professor Riccardo Wittek (University of Lausanne, Switzerland) for generously providing the FWPV early/late promoter before publication, Drs J Bennink and J Yewdell (Laboratory of Viral Diseases, NIH) for provision of the rVV-OVA, Dr M Mackett (Paterson Institute, Manchester, UK) for provision of v182, and M Hughes and J Barry for assistance with FACS. This project is supported by the Cancer Research Campaign, The Christie Hospital Endowment, the BBSRC, and EC (BIO4-CT950473).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Zhang, Y., Dermine, S. et al. Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T lymphocyte activity. Gene Ther 7, 1680–1689 (2000). https://doi.org/10.1038/sj.gt.3301288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301288

Keywords

This article is cited by

Search

Quick links