Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy

Abstract

The gibbon ape leukaemia virus envelope fusogenic membrane glycoprotein (GALV FMG) is a highly potent cytotoxic gene with great potential for use in cancer gene therapy. Here, we show that production of a VSV-G pseudotyped lentiviral vector expressing GALV FMG reconciles the requirements of viral production with the cytotoxic effects of GALV in human cells and has high titres on both dividing and quiescent tumour cells. Direct intratumoral injection of these stocks eradicated progressively growing human tumour xenografts. The potent bystander effect of the FMG transgene is a major contributor to the success of this approach but immunological activation may also be a factor. To our knowledge, this is the first demonstration in vivo of the potential both of FMG and lentiviral vectors for cancer gene therapy and highlights the importance of exploring different vector systems to complement the biological properties of the therapeutic transgene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 5
Figure 3

Similar content being viewed by others

References

  1. Vile RG, Russell S, Lemoine N . Cancer gene therapy: hard lessons and new courses Gene Therapy 2000 7: 2–8

    Article  CAS  PubMed  Google Scholar 

  2. Bateman A et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth Cancer Res 2000 60: 1492–1497

    CAS  PubMed  Google Scholar 

  3. Fielding AK et al. A hyperfusogenic Gibbon Ape Leukaemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display Hum Gene Ther 2000 11: 817–826

    Article  CAS  PubMed  Google Scholar 

  4. Januszeski MM et al. Functional analysis of the cytoplasmic tail of Moloney murine leukemia virus envelope protein J Virol 1997 71: 3613–3619

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Melcher AA et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression Nature Med 1998 4: 581–587

    Article  CAS  PubMed  Google Scholar 

  6. Todryk S et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake J Immunol 1999 163: 1398–1408

    CAS  PubMed  Google Scholar 

  7. Ali M, Lemoine NR, Ring CJA . The use of DNA viruses as vectors for gene therapy Gene Therapy 1994 1: 367–384

    CAS  PubMed  Google Scholar 

  8. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  9. Peng K-W, Vile R . Vector development for cancer gene therapy Tumor Targeting 1999 4: 3–11

    CAS  Google Scholar 

  10. Naldini L et al. Efficient transfer, integration and sustained long term expression of the transgene in adult rat brain injected with a lentiviral vector Proc Natl Acad Sci USA 1996 93: 11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zufferey R et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  PubMed  Google Scholar 

  12. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–266

    Article  CAS  PubMed  Google Scholar 

  13. Trono D . Lentiviral vectors: turning a deadly force into a therapeutic agent Gene Therapy 2000 7: 20–23

    Article  CAS  PubMed  Google Scholar 

  14. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moolten FL . Drug sensitivity (‘suicide’) genes for selective cancer chemotherapy Cancer Gene Ther 1994 1: 279–287

    CAS  PubMed  Google Scholar 

  16. Pardoll DM . Paracrine cytokine adjuvants in cancer immunotherapy Annu Rev Immunol 1995 13: 399–415

    Article  CAS  PubMed  Google Scholar 

  17. Arai T et al. A new system for stringent, high-titer vesicular stomatitis virus G protein-pseudotyped retrovirus vector induction by introduction of Cre recombinase into stable prepackaging cell lines J Virol 1998 72: 1115–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivera VM et al. A humanized system for pharmacologic control of gene expression Nature Med 1996 2: 1028–1032

    Article  CAS  PubMed  Google Scholar 

  19. Chong H et al. Tumour cell expression of B7 costimulatory molecules and interleukin-12 or granulocyte–macrophage colony stimulating factor induces a local antitumour response and may generate systemic protective immunity Gene Therapy 1998 5: 223–232

    Article  CAS  PubMed  Google Scholar 

  20. Diaz RM, Eisen T, Hart IR, Vile RG . Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma J Virol 1998 72: 789–795

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rein A et al. Evidence for cooperation between murine leukemia virus Env molecules in mixed oligomers J Virol 1998 72: 3432–3435

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Markowitz D, Goff S, Bank A . Construction and use of a safe and efficient amphotropic packaging cell line Virology 1988 167: 400–406

    Article  CAS  PubMed  Google Scholar 

  23. Cosset F-L et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum J Virol 1995 69: 7430–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Burns JC et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells Proc Natl Acad Sci USA 1993 90: 8033–8037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Groh V, Steinle A, Bauer S, Spies T . Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells Science 1998 279: 1737–1740

    Article  CAS  PubMed  Google Scholar 

  26. Groh V et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB Proc Natl Acad Sci USA 1999 96: 6879–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldman MJ, Lee PS, Yang JS, Wilson JM . Lentiviral vectors for gene therapy of cystic fibrosis Hum Gene Ther 1997 8: 2261–2268

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi M, Miyoshi H, Verma IM, Gage FH . Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer J Virol 1999 73: 7812–7816

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallichan WS et al. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis Hum Gene Ther 1998 9: 2717–2726

    Article  CAS  PubMed  Google Scholar 

  30. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  31. Park F et al. Efficient lentiviral transduction of liver requires cell cycling in vivo Nat Genet 2000 24: 49–52

    Article  CAS  PubMed  Google Scholar 

  32. Morgenstern JP, Land H . Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line Nucleic Acids Res 1990 18: 3587–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo delivery J Virol 1998 72: 9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Suzanne Marie Facteau and Jill Ludvigson for experimental assistance, Francois Loic-Cosset for cell lines and Toni Higgins for expert secretarial assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, R., Bateman, A., Emiliusen, L. et al. A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy. Gene Ther 7, 1656–1663 (2000). https://doi.org/10.1038/sj.gt.3301277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301277

Keywords

This article is cited by

Search

Quick links