Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?

Abstract

Adoptive transfer of autologous dendritic cells (DC) presenting tumor-associated antigens initiate and sustain an immune response which eradicate murine malignancies. Based on these observations, several clinical trials are in progress testing safety and efficacy with encouraging preliminary reports. In these approaches, ex vivo incubation of DC with a source of tumor antigens is required to load the relevant antigenic epitopes on the adequate antigen presenting molecules. Recent data show that in some instances exogenous DC artificially injected into malignant tissue or endogenous DC attracted to the tumor nodule by means of gene transfer of GM-CSF and CD40L into malignant cells result in efficacious antitumor immunity. In the case of intratumoral injection of DC the procedure is curative only if DC had been genetically engineered to produce IL-12, IL-6 or to express CD40L. Evidence has been obtained showing that intratumoral DC can capture and process tumor antigens to be presented to T-lymphocytes. Although the exact mechanisms of tumor antigen acquisition by DC are still unclear, available data suggest a role for heat shock proteins released from dying malignant cells and for the internalization of tumor-derived apoptotic bodies. Roles for tumor necrosis versus apoptosis are discussed in light of the ‘danger theory’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Timmerman JM, Levy R . Dendritic cell vaccines for cancer immunotherapy Annu Rev Med 1999 50: 507–529

    Article  CAS  PubMed  Google Scholar 

  2. Hart DN . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  4. Bell D, Young JW, Banchereau J . Dendritic cells Adv Immunol 1999 72: 255–324

    Article  CAS  PubMed  Google Scholar 

  5. Cao X et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity J Immunol 1998 161: 6238–6244

    CAS  PubMed  Google Scholar 

  6. Zitvogel L et al. IL-12-engineered dendritic cells serve as effective tumor vaccine adjuvants in vivo Ann NY Acad Sci 1996 795: 284–293

    Article  CAS  PubMed  Google Scholar 

  7. Nishioka Y et al. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12 Cancer Res 1999 59: 4035–4041

    CAS  PubMed  Google Scholar 

  8. Melero I et al. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas Gene Therapy 1999 6: 1779–1784

    Article  CAS  PubMed  Google Scholar 

  9. Miller PW et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication Hum Gene Ther 2000 11: 53–65

    Article  CAS  PubMed  Google Scholar 

  10. Nair SK . Immunotherapy of cancer with dendritic cell-based vaccines (editorial) Gene Therapy 1998 5: 1445–1446

    Article  CAS  PubMed  Google Scholar 

  11. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  12. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  14. Ashley DM et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1996 186: 1177–1182

    Article  Google Scholar 

  15. Nair SK et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA Nat Biotechnol 1998 16: 364–369

    Article  CAS  PubMed  Google Scholar 

  16. Mayordomo JI et al. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines Stem Cells 1997 15: 94–103

    Article  CAS  PubMed  Google Scholar 

  17. Celluzzi CM et al. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity (see comments) J Exp Med 1996 183: 283–287

    Article  CAS  PubMed  Google Scholar 

  18. Nestle FO et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells (see comments) Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  19. Paglia P, Chiodoni C, Rodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo (see comments) J Exp Med 1996 183: 317–322

    Article  CAS  PubMed  Google Scholar 

  20. Nair SK, Snyder D, Rouse BT, Gilboa E . Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts Int J Cancer 1997 70: 706–715

    Article  CAS  PubMed  Google Scholar 

  21. Zitvogel L et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines (see comments) J Exp Med 1996 183: 87–97

    Article  CAS  PubMed  Google Scholar 

  22. Celluzzi CM, Falo LD Jr . Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection J Immunol 1998 160: 3081–3085

    CAS  PubMed  Google Scholar 

  23. Melcher A et al. Adoptive transfer of immature dendritic cells with autologous or allogeneic tumor cells generates systemic antitumor immunity Cancer Res 1999 59: 2802–2805

    CAS  PubMed  Google Scholar 

  24. Kikuchi T, Crystal RG . Adenovirus vector-mediated modification of dendritic cells to express CD40 ligand elicits therapeutic immunity against mutine tumors American Society of Gene Therapy Second Annual Meeting, Washington DC 1999

    Google Scholar 

  25. Chiodoni C et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response J Exp Med 1999 190: 125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trinchieri G . Interleukin-12: a cytokine at the interface of inflammation and immunity Adv Immunol 1998 70: 83–243

    Article  CAS  PubMed  Google Scholar 

  27. Fukao T, Matsuda S, Koyasu S . Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells J Immunol 2000 164: 64–71

    Article  CAS  PubMed  Google Scholar 

  28. Shurin MR, Esche C, Peron JM, Lotze MT . Antitumor activities of IL-12 and mechanisms of action Chem Immunol 1997 68: 153–174

    Article  CAS  PubMed  Google Scholar 

  29. Cavallo F et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12 Cancer Res 1999 59: 414–421

    CAS  PubMed  Google Scholar 

  30. Grohmann U et al. IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production Immunity 1998 9: 315–323

    Article  CAS  PubMed  Google Scholar 

  31. Ohteki T et al. Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells J Exp Med 1999 189: 1981–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogawa M et al. Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression Cancer Res 1998 58: 2426–2432

    CAS  PubMed  Google Scholar 

  33. Ogawa M et al. A critical role for a peritumoral stromal reaction in the induction of T cell migration responsible for interleukin-12-induced tumor regression Cancer Res 1999 59: 1531–1538

    CAS  PubMed  Google Scholar 

  34. Voest EE et al. Inhibition of angiogenesis in vivo by interleukin 12 (see comments) J Natl Cancer Inst 1995 87: 581–586

    Article  CAS  PubMed  Google Scholar 

  35. Jakob T et al. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA J Immunol 1998 161: 3042–3049

    CAS  PubMed  Google Scholar 

  36. De Smedt T et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo J Exp Med 1996 184: 1413–1424

    Article  CAS  PubMed  Google Scholar 

  37. Cella M et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA J Exp Med 1999 189: 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roake JA et al. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1 J Exp Med 1995 181: 2237–2247

    Article  CAS  PubMed  Google Scholar 

  39. Chen W et al. Human 60-kDa heat-shock protein: a danger signal to the innate immune system J Immunol 1999 162: 3212–3219

    CAS  PubMed  Google Scholar 

  40. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation J Exp Med 1996 184: 747–752

    Article  CAS  PubMed  Google Scholar 

  41. Caux C et al. Activation of human dendritic cells through CD40 cross-linking J Exp Med 1994 180: 1263–1272

    Article  CAS  PubMed  Google Scholar 

  42. Melcher A et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression Nature Med 1998 4: 581–587

    Article  CAS  PubMed  Google Scholar 

  43. Todryk S et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake J Immunol 1999 163: 1398–1408

    CAS  PubMed  Google Scholar 

  44. Tamura Y et al. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations Science 1997 278: 117–120

    Article  CAS  PubMed  Google Scholar 

  45. Przepiorka D, Srivastava PK . Heat shock protein–peptide complexes as immunotherapy for human cancer Mol Med Today 1998 4: 478–484

    Article  CAS  PubMed  Google Scholar 

  46. Gallucci S, Lolkema M, Matzinger P . Natural adjuvants: endogenous activators of dendritic cells Nature Med 1999 5: 1249–1255

    Article  CAS  PubMed  Google Scholar 

  47. Sauter B et al. Consequences of cell death. Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells J Exp Med 2000 191: 423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinman RM, Turley S, Mellman I, Inaba K . The induction of tolerance by dendritic cells that have captured apoptotic cells J Exp Med 2000 191: 411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Melcher A, Gough M, Todryk S, Vile R . Apoptosis or necrosis for tumor immunotherapy: what's in a name? J Mol Med 1999 77: 824–833

    Article  CAS  PubMed  Google Scholar 

  50. Matzinger P . Tolerance, danger, and the extended family Annu Rev Immunol 1994 12: 991–1045

    Article  CAS  PubMed  Google Scholar 

  51. Matzinger P . An innate sense of danger Semin Immunol 1998 10: 399–415

    Article  CAS  PubMed  Google Scholar 

  52. Fanger NA, Maliszewski CR, Schooley K, Griffith TS . Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) J Exp Med 1999 190: 1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez NC et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo Nature Med 1999 5: 405–411

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work has been supported by CICYT (SAF99–0039) to IM, AIRC and CNR PF Biotechnology to MPC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melero, I., Vile, R. & Colombo, M. Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?. Gene Ther 7, 1167–1170 (2000). https://doi.org/10.1038/sj.gt.3301234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301234

Keywords

Search

Quick links