Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

Sodium phosphate enhances plasmid DNA expression in vivo

Abstract

Intramuscular injection of plasmid DNA results in myofiber cell expression of proteins encoded by the DNA. The preferred vehicle for plasmid DNA injections has been saline (154 mM sodium chloride) or PBS (154 mM NaCl plus 10 mM sodium phosphate). Here, it is shown that injection of luciferase or β-galactosidase encoding plasmid DNA in a 150 mM sodium phosphate vehicle into murine muscle resulted in a two- to seven-fold increase in transgene expression compared with DNA injected in saline or PBS. When the DNA encoded secreted alkaline phosphatase, preproinsulin or interferon, sodium phosphate vehicle increased their serum levels by two- to four-fold. When the DNA encoded mouse erythropoietin, sodium phosphate vehicle increased hematocrits by two-fold compared with DNA injected in saline. When the DNA encoded influenza nucleoprotein, sodium phosphate increased anti-nucleoprotein antibody titers by two-fold. The expression of luciferase from plasmid DNA instilled into lung was increased five-fold compared with that in vehicle without sodium phosphate. Incubation of plasmid DNA with muscle extract or serum showed that sodium phosphate protected the DNA from degradation. Thus, a change from sodium chloride to sodium phosphate vehicle can enhance the expression of plasmid DNA in a tissue, possibly by inhibiting DNA degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wolff JA et al. Direct gene transfer into mouse muscle in vivo Science 1990 247: 1465–1468

    Article  CAS  Google Scholar 

  2. Wheeler CJ et al. A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung Proc Natl Acad Sci USA 1996 93: 11454–11459

    Article  CAS  Google Scholar 

  3. Restifo NP et al. Enhancing the recognition of tumour associated antigens Folia Biol 1994 40: 74–88

    CAS  Google Scholar 

  4. Ulmer JB et al. Immunization against viral proteins with naked DNA Ann NY Acad Sci 1995 772: 117–125

    Article  CAS  Google Scholar 

  5. Horton HM et al. A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon alpha Proc Natl Acad Sci USA 1999 96: 1553–1558

    Article  CAS  Google Scholar 

  6. Whalen R . DNA Vaccine library website:www.DNAVaccine.com

  7. Yagi K et al. Basic study on gene therapy of human malignant glioma by use of the cationic liposome-entrapped human interferon beta gene Hum Gene Ther 1999 10: 1975–1982

    Article  CAS  Google Scholar 

  8. Qin L et al. Gene transfer for transplantation. Prolongation of allograft survival with transforming growth factor-beta 1 Ann Surg 1994 220: 508–518

    Article  CAS  Google Scholar 

  9. Dalesandro J et al. Gene therapy for donor hearts: ex vivo liposome-mediated transfection J Thorac Cardiovasc Surg 1996 111: 416–421

    Article  CAS  Google Scholar 

  10. Moffatt M, Cookson W . Naked DNA – new shots for allergy Nature Med 1996 2: 515–516

    Article  CAS  Google Scholar 

  11. Ragno S et al. Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65 Arthritis Rheum 1997 40: 277–283

    Article  CAS  Google Scholar 

  12. Piccirillo CA, Chang YG, Prud'homme GJ . TGF-beta 1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice J Immunol 1998 161: 3950–3956

    CAS  PubMed  Google Scholar 

  13. Dow SW et al. Systemic and local interferon gamma gene delivery to the lungs for treatment of allergen-induced airway hyperresponsiveness in mice Hum Gene Ther 1999 10: 1905–1914

    Article  CAS  Google Scholar 

  14. Piccirillo CA, Prud'homme GJ . Prevention of experimental allergic encephalomyelitis by intramuscular gene transfer with cytokine-encoding plasmid vectors Hum Gene Ther 1999 10: 1915–1922

    Article  CAS  Google Scholar 

  15. Levy MY, Barron LG, Meyer KB, Szoka FC Jr . Characterization of plasmid DNA transfer into mouse skeletal muscle: evaluation of uptake mechanism, expression and secretion of gene products into blood Gene Therapy 1996 3: 201–211

    CAS  Google Scholar 

  16. Tripathy SK et al. Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector Proc Natl Acad Sci USA 1996 93: 10876–10880

    Article  CAS  Google Scholar 

  17. Tsurumi Y et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion Circulation 1996 94: 3281–3290

    Article  CAS  Google Scholar 

  18. Novo FJ, Gorecki DC, Goldspink, G, MacDermot KD . Gene transfer and expression of human alpha-galactosidase from mouse muscle in vitro and in vivo Gene Therapy 1997 4: 488–492

    Article  CAS  Google Scholar 

  19. Baumgartner I et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia Circulation 1998 97: 1114–1123

    Article  CAS  Google Scholar 

  20. Mir LM et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses Proc Natl Acad Sci USA 1999 96: 4262–4267

    Article  CAS  Google Scholar 

  21. Danko I et al. Dystrophin expression improves myofiber survival in mdx muscle following intramuscular plasmid DNA injection Hum Mol Genet 1993 2: 2055–2061

    Article  CAS  Google Scholar 

  22. Cheng SH, Scheule RK . Airway delivery of cationic lipid: DNA complexes for cystic fibrosis Adv Drug Deliv Rev 1998 30: 173–184

    Article  CAS  Google Scholar 

  23. Hartikka J et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle Hum Gene Ther 1996 7: 1205–1217

    Article  CAS  Google Scholar 

  24. Manthorpe M, Hartikka J, Vahlsing HL, Sawdey M . Quantification of plasmid DNA expression in vivo. In: Ferre F (ed) Gene Quantification F Birkhäuser: Boston, MA 1998 pp 343–368

    Chapter  Google Scholar 

  25. Barnhart KM et al. Enhancer and promoter chimeras in plasmids designed for intramuscular injection: a comparative in vivo and in vitro study Hum Gene Ther 1998 9: 2545–2553

    Article  CAS  Google Scholar 

  26. Sawa T et al. Intraluminal water increases expression of plamsid DNA in rat lung Hum Gene Ther 1996 7: 933–941

    Article  CAS  Google Scholar 

  27. Dawson MJ, Gadian DG, Wilkie DR . Muscular fatigue investigated by phosphorus nuclear magnetic resonance Nature 1978 274: 861–866

    Article  CAS  Google Scholar 

  28. Cooke R et al. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate J Physiol (London) 1988 395: 77–97

    Article  CAS  Google Scholar 

  29. Fruen BR et al. Regulation of the sarcoplasmic reticulum ryanodine receptor by inorganic phosphate J Biol Chem 1994 269: 192–198

    CAS  PubMed  Google Scholar 

  30. McLester JR . Muscle contraction and fatigue: the role of adenosine 5′-diphosphate and inorganic phosphate Sports Med 1997 23: 287–305

    Article  Google Scholar 

  31. Mulligan IP et al. The effect of phosphate on the relaxation of frog skeletal muscle Pflugers Arch 1999 437: 393–399

    Article  CAS  Google Scholar 

  32. Fryer MW, Owen VJ, Lamb GD, Stephenson DG . Effects of creatine phosphate and P(i) on Ca2+ movements and tension development in rat skinned skeletal muscle fibres J Physiol (London) 1995 482: 123–140

    Article  CAS  Google Scholar 

  33. Westerblad H, Allen DG . The effects of intracellular injections of phosphate on intracellular calcium and force in single fibers of mouse skeletal muscle Eur J Physiol 1996 431: 964–970

    Article  CAS  Google Scholar 

  34. Bi GQ, Alderon JM, Steinhardt RA . Calcium-regulated exocytosis is required for cell membrane resealing J Cell Biol 1995 131: 1747–1758

    Article  CAS  Google Scholar 

  35. Doh SG et al. Spatial-temporal patterns of gene expression in mouse skeletal muscle after injection of lacZ plasmid DNA Gene Therapy 1997 4: 648–663

    Article  CAS  Google Scholar 

  36. McNeil PL, Khakee R . Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage Am J Pathol 1992 140: 1097–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McNeil PL, Steinhardt RA . Loss, restoration, and maintenance of plasma membrane integrity J Cell Biol 1997 137: 1–4

    Article  CAS  Google Scholar 

  38. Terasaki M, Miyake K, McNeil PL . Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle–vesicle fusion events J Cell Biol 1997 139: 63–74

    Article  CAS  Google Scholar 

  39. Bednar J et al. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo J Mol Biol 1994 235: 825–847

    Article  CAS  Google Scholar 

  40. Vologodskii AV, Cozzarelli NR . Conformational and thermodynamic properties of supercoiled DNA Ann Rev Biophys Biomol Struct 1994 23: 609–643

    Article  CAS  Google Scholar 

  41. Gebe JA et al. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments J Mol Biol 1996 262: 105–128

    Article  CAS  Google Scholar 

  42. Lybchenko YL, Shlyaktenko LS . Visualization of supercoiled DNA with atomic force microscopy Proc Natl Acad Sci USA 1997 94: 496–501

    Article  Google Scholar 

  43. Rybenkov VV, Vologodskii AV, Cozzarelli NR . The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis J Mol Biol 1997 267: 299–311

    Article  CAS  Google Scholar 

  44. Linn S, Lehman IR . An endonuclease from Neurospora crassa specific for polynucleotides lacking an ordered structure J Biol Chem 1965 241: 2694–2699

    Google Scholar 

  45. Holloman WK, Holliday R . Studies on a nuclease from Ustilago maydis J Biol Chem 1973 248: 8107–8113

    CAS  PubMed  Google Scholar 

  46. Maxwell WJ, Winder FG . High sensitivity of deoxyribonuclease 4 of Aspergilla nidulans to inhibition by orthophosphate Biochem Soc Transact 1980 8: 445–446

    Article  CAS  Google Scholar 

  47. Suck D, Oefner C . Structure of DNase I and 2.0 A resolution suggests a mechanism for binding to and cutting DNA Nature 1986 321: 620–625

    Article  CAS  Google Scholar 

  48. Lazerides E, Lindberg U . Actin is the naturally occurring inhibitor of deoxyribonuclease I Proc Natl Acad Sci USA 1974 71: 4724–4726

    Google Scholar 

  49. Manthorpe M et al. Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice Hum Gene Ther 1993 4: 419–431

    Article  CAS  Google Scholar 

  50. Crook K, Rook K, McLachlan G, Steveneson BJ . Plasmid DNA molecules complexed with cationic liposomes are protected from degradation by nucleases and shearing by aerosolation Gene Therapy 1996 3: 834–839

    CAS  PubMed  Google Scholar 

  51. Kariko K, Kuo A, Barnathan ES, Langer DJ . Phosphate-enhanced transfection of cationic-complexed mRNA and plasmid DNA Biochim Biophys Acta 1998 1369: 320–334

    Article  CAS  Google Scholar 

  52. Kichler A, Zauner W, Ogris M, Wagner E . Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles Gene Therapy 1998 5: 855–860

    Article  CAS  Google Scholar 

  53. Physician's Desk Reference. Medical Economics Co: Monyvale, New Jersey, 1998

  54. Abai AM, Hobart P, Barnhart, KM . Insulin delivery with plasmid DNA Hum Gene Ther 1999 10: 2637–2649

    Article  CAS  Google Scholar 

  55. Horn NA, Meek JA, Budahazi G, Marquet M . Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials Hum Gene Ther 1995 6: 565–573

    Article  CAS  Google Scholar 

  56. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory Press: Plainview, NY 1989

    Google Scholar 

  57. Montgomery DL et al. Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors DNA Cell Biol 1993 12: 777–783

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Katja Tonsky and Diane Hazard for animal technical support and Dr Carl Wheeler for synthesis of the GAP-DLRIE cationic lipid used for lung experiments. We also thank Drs Jon Norman, Peter Hobart, Suezanne Parker and Carl Wheeler for discussions and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartikka, J., Bozoukova, V., Jones, D. et al. Sodium phosphate enhances plasmid DNA expression in vivo. Gene Ther 7, 1171–1182 (2000). https://doi.org/10.1038/sj.gt.3301226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301226

Keywords

This article is cited by

Search

Quick links