Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Acquired Diseases
  • Published:

A radiation-controlled molecular switch for use in gene therapy of cancer

Abstract

Ionising radiation induces the expression of a number of radiation-responsive genes and there is current interest in exploiting this to regulate the expression of exogenous therapeutic genes in gene therapy strategies for cancer. However, the radiation-responsive promoters used in these approaches are often associated with low and transient levels of therapeutic gene expression. We describe here a novel radiation-triggered molecular switching device based on promoter elements from the radiation-responsive Egr-1 gene and the cre-LoxP site-specific recombination system of the P1 bacteriophage. Using this system, a single, minimally toxic dose of radiation induced cre-mediated excision of a lox-P flanked stop cassette in a silenced expression vector and this resulted in amplified levels of CMV-promoter-driven expression of the exogenous tumour-sensitising gene, HSV-tk. This strategy could be used in combination with targeted delivery and tumour-specific promoters to elicit the tumour-targeted and prolonged expression of a variety of tumour-sensitising genes and provide an unprecedented level of control and tumour selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Weichselbaum RR, Hallahan DE, Fuks Z, Kufe DW . Radiation induction of immediate early genes: effectors of the radiation stress response Int J Radiat Oncol Biol Phys 1994 30: 229–234

    Article  CAS  PubMed  Google Scholar 

  2. Weichselbaum RR et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells Cancer Res 1994 54: 4266–4269

    CAS  PubMed  Google Scholar 

  3. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ . Targeting gene therapy to cancer: a review Oncol Res 1997 9: 313–325

    CAS  PubMed  Google Scholar 

  4. Weichselbaum RR, Kufe D . Gene therapy of cancer Lancet 1997 349: SII10–SII12

    Article  PubMed  Google Scholar 

  5. Hallahan DE, Weichselbaum R . Role of gene therapy in radiation oncology Cancer Treat Res 1998 93: 153–167

    Article  CAS  PubMed  Google Scholar 

  6. Hallahan DE et al. Spatial and temporal control of gene therapy using ionizing radiation Nature Med 1995 1: 786–791

    Article  CAS  PubMed  Google Scholar 

  7. Jahroudi N, Ardekani AM, Greenberger JS . Ionizing irradiation increases transcription of the von Willebrand factor gene in endothelial cells Blood 1996 88: 3801–3814

    CAS  PubMed  Google Scholar 

  8. Joki T, Nakamura M, Ohno T . Activation of the radiosensitive EGR-1 promoter induces expression of the herpes simplex virus thymidine kinase gene and sensitivity of human glioma cells to ganciclovir Hum Gene Ther 1995 6: 1507–1513

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi T, Namiki Y, Ohno T . Induction of the suicide HSV TK gene by activation of the Egr 1 promoter with radioisotopes Hum Gene Ther 1997 8: 827–833

    Article  CAS  PubMed  Google Scholar 

  10. Datta R et al. Ionizing radiation activates transcription of the EGR1 gene via CArG elements Proc Natl Acad Sci USA 1992 89: 10149–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Datta R et al. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation Proc Natl Acad Sci USA 1993 90: 2419–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marples B et al. Development of synthetic promoters for radiation-mediated gene therapy Gene Therapy 2000 7: 511–517

    Article  CAS  PubMed  Google Scholar 

  13. Sternberg N, Hamilton D, Hoess R . Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome J Mol Biol 1981 150: 487–507

    Article  CAS  PubMed  Google Scholar 

  14. Sauer B, Henderson N . Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome Nucleic Acids Res 1989 17: 147–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kilby NJ, Snaith MR, Murray JA . Site-specific recombinases: tools for genome engineering Trends Genet 1993 9: 413–421

    Article  CAS  PubMed  Google Scholar 

  16. Anton M, Graham FL . Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression J Virol 1995 69: 4600–4606

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo Z et al. Efficient and sustained transgene expression in mature rat oligodendrocytes in primary culture J Neurosci Res 1996 43: 32–41

    Article  CAS  PubMed  Google Scholar 

  18. Bartlett RJ et al. Long-term expression of a fluorescent reporter gene via direct injection of plasmid vector into mouse skeletal muscle: comparison of human creatine kinase and CMV promoter expression levels in vivo Cell Transplant 1996 5: 411–419

    Article  CAS  PubMed  Google Scholar 

  19. Ropp JD et al. Aequorea green fluorescent protein analysis by flow cytometry Cytometry 1995 21: 309–317

    Article  CAS  PubMed  Google Scholar 

  20. Lybarger L, Dempsey D, Franek KJ, Chervenak R . Rapid generation and flow cytometric analysis of stable GFP-expressing cells Cytometry 1996 25: 211–220

    Article  CAS  PubMed  Google Scholar 

  21. Wagner MJ, Sharp JA, Summers WC . Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1 Proc Natl Acad Sci USA 1981 78: 1441–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim JH, Kim SH, Brown SL, Freytag SO . Selective enhancement by an antiviral agent of the radiation-induced cell killing of human glioma cells transduced with HSV-tk gene Cancer Res 1994 54: 6053–6056

    CAS  PubMed  Google Scholar 

  23. Manome Y et al. Transgene expression in malignant glioma using a replication-defective adenoviral vector containing the Egr-1 promoter: activation by ionizing radiation or uptake of radioactive iododeoxyuridine Hum Gene Ther 1998 9: 1409–1417

    Article  CAS  PubMed  Google Scholar 

  24. Elshami AA et al. Gap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro Gene Therapy 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  25. Denning C, Pitts JD . Bystander effects of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes Hum Gene Ther 1997 8: 1825–1835

    Article  CAS  PubMed  Google Scholar 

  26. Duflot-Dancer A et al. Long-term connexin-mediated bystander effect in highly tumorigenic human cells in vivo in herpes simplex virus thymidine kinase/ganciclovir gene therapy Gene Therapy 1998 5: 1372–1378

    Article  CAS  PubMed  Google Scholar 

  27. Kianmanesh AR et al. ‘Distant’ bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor Hum Gene Ther 1997 8: 1807–1814

    Article  CAS  PubMed  Google Scholar 

  28. Misawa T et al. Development of systemic immunologic responses against hepatic metastases during gene therapy for peritoneal carcinomatosis with retroviral HS-tk and ganciclovir J Gastrointest Surg 1997 1: 527–533

    Article  CAS  PubMed  Google Scholar 

  29. Wilson KM et al. HSV-tk gene therapy in head and neck squamous cell carcinoma. Enhancement by the local and distant bystander effect Arch Otolaryngol Head Neck Surg 1996 122: 746–749

    Article  CAS  PubMed  Google Scholar 

  30. Elliott G, O'Hare P . Intercellular trafficking of VP22-GFP fusion proteins Gene Therapy 1999 6: 149–151

    Article  CAS  PubMed  Google Scholar 

  31. Kanegai Y et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase Nucleic Acids Res 1995 23: 3816–3821

    Article  Google Scholar 

  32. Sakai K, Mitani K, Miyazaki J . Efficient regulation of gene expression by adenovirus vector-mediated delivery of the CRE recombinase Biochem Biophys Res Comm 1995 217: 393–401

    Article  CAS  PubMed  Google Scholar 

  33. Lasko M et al. Targeted oncogene activation by site-specific recombination in transgenic mice Proc Natl Acad Sci USA 1992 98: 6232–6236

    Google Scholar 

  34. Sato Y et al. Enhanced and specific gene expression via tissue-specific production of Cre recombinase using adenovirus vector Biochem Biophys Res Comm 1998 244: 455–462

    Article  CAS  PubMed  Google Scholar 

  35. Anderson WF . Human gene therapy Nature 1998 392: 25–30

    Article  CAS  PubMed  Google Scholar 

  36. Mullen CA, Petropoulos D, Lowe RM . Treatment of microscopic pulmonary metastases with recombinant autologous tumor vaccine expressing interleukin 6 and Escherichia coli cytosine deaminase suicide genes Cancer Res 1996 56: 1361–1366

    CAS  PubMed  Google Scholar 

  37. Hart IR . Tissue specific promoters in targeting systemically delivered gene therapy Semin Oncol 1996 23: 154–158

    CAS  PubMed  Google Scholar 

  38. Prince HM . Gene transfer: a review of methods and applications Pathology 1998 30: 335–347

    Article  CAS  PubMed  Google Scholar 

  39. http://www.nih.gov/news/panelrep.html

Download references

Acknowledgements

BM and SDS were equal contributors to this work. We thank Dr Steve Roberts for statistical analysis. The studies were supported by the Cancer Research Campaign. SDS was supported by the Christie Hospital Endowment Fund, BM was supported by the Friends of Rosie Children's Cancer Research Fund. MJE is a Cancer Research Campaign Life Fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, S., Marples, B., Hendry, J. et al. A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Ther 7, 1121–1125 (2000). https://doi.org/10.1038/sj.gt.3301223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301223

Keywords

This article is cited by

Search

Quick links