Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo

Abstract

Recombinant adenoviruses (Ad) are attractive vectors for gene transfer in vitro and in vivo. However, the widely used E1-deleted vectors as well as newer generation vectors contain viral sequences, including transcriptional elements for viral gene expression. These viral regulatory elements can interfere with heterologous promoters used to drive transgene expression and may impair tissue-specific or inducible transgene expression. This study demonstrates that the activity of a metal-inducible promoter is affected by Ad sequences both upstream and downstream of the transgene cassette in both orientations. Interference with expression from the heterologous promoter was particularly strong by viral regulatory elements located within Ad sequences nucleotides 1–341. This region is present in all recombinant Ad vectors, including helper-dependent vectors. An insulator element derived from the chicken γ-globin locus (HS-4) was employed to shield the inducible promoter from viral enhancers as tested after gene transfer with first-generation Ad vectors in vitro and in vivo. Optimal shielding was obtained when the transgene expression cassette was flanked on both sides by HS-4 elements, except for when the HS-4 element was placed in 3′→5′ orientation in front of the promoter. The insulators reduced basal expression to barely detectable levels in the non-induced stage, and allowed for induction factors of approximately 40 and approximately 230 in vitro and in vivo, respectively. Induction ratios from Ad vectors without insulators were approximately 40-fold lower in vitro and approximately 15-fold lower in vivo. This study proves the potential of insulators to improve inducible or tissue-specific gene expression from adenovirus vectors, which is important for studying gene functions as well as for gene therapy approaches. Furthermore, our data show that insulators exert enhancer-blocking effects in episomal DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Schiedner G et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  2. Burcin MM et al. Adenovirus-mediated regulable target gene expression in vivo Proc Natl Acad Sci USA 1999 96: 355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hatfield L, Hearing P . Redundant elements in the adenovirus type 5 inverted terminal repeat promote bidirectional transcription in vitro and are important for virus growth in vivo Virology 1991 184: 265–276

    Article  CAS  PubMed  Google Scholar 

  4. Miralles VJ, Cortes P, Stone N, Reinberg D . The adenovirus inverted terminal repeat functions as an enhancer in a cell-free system J Biol Chem 1989 264: 10763–10772

    CAS  PubMed  Google Scholar 

  5. Leza M, Hearing P . Cellular transcription factors bind to adenovirus early region promoters and to cAMP response elements J Virol 1988 62: 3003–3013

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sassone-Corsi P et al. Far upstream sequences are required for efficient transcription form the adenovirus-2 E1A transcription unit Nucleic Acids Res 1983 11: 8735–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hearing P, Shenk T . The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element Cell 1983 33: 695–703

    Article  CAS  PubMed  Google Scholar 

  8. Hearing P, Shenk T . Adenovirus 5 E1A enhancer contains two distinct domains: one is specific for E1A and the other modulates expression of all early units in cis Cell 1986 45: 229–236

    Article  CAS  PubMed  Google Scholar 

  9. Ohyama T . Bent DNA in the human adenovirus type 2 E1A enhancer is an architectural element for transcription stimulation J Biol Chem 1996 271: 27823–27828

    Article  CAS  PubMed  Google Scholar 

  10. Grable M, Hearing P . Cis and trans requirements for the selective packaging of adenovirus type 5 DNA J Virol 1992 66: 723–731

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Loeken MR, Brady J . The adenovirus E2a enhancer: analysis of regulatory sequences and changes in binding activity of ATF and E2F following adenovirus infection J Biol Chem 1989 264: 6572–6579

    CAS  PubMed  Google Scholar 

  12. Zajchowski DA, Jalinot P, Kedinger C . E1a-mediated stimulation of the adenovirus E3 promoter involves an enhancer element within the nearby E2a promoter J Virol 1988 62: 1762–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Imperiale MJ, Hart RP, Nevins JR . An enhancer-like element in the adenovirus E2 promoter contains sequences essential for uninduced and E1A-induced transcription Proc Natl Acad Sci USA 1985 82: 381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lieber A et al. Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo J Virol 1996 70: 8944–8960

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Spergel JM, Chen-Kiang S . Interleukin 6 enhances a cellular activity that functionally substitutes for E1a protein in transactivation Proc Natl Acad Sci USA 1991 88: 6472–6476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. La Thangue NB, Rigby PW . An adenovirus E1a-like transcription factor is regulated during the differentiation of murine embryonal carcinoma cells Cell 1987 49: 507–513

    Article  CAS  PubMed  Google Scholar 

  18. Ptashne M . How eukaryotic transcriptional activators work Nature 1988 335: 683–689

    Article  CAS  PubMed  Google Scholar 

  19. Felsenfeld G et al. Chromatin structure and gene expression Proc Natl Acad Sci USA 1996 93: 93840–93886

    Article  Google Scholar 

  20. Udvardy A . Dividing the empire: boundary chromatin elements delimit the territory of enhancers EMBO J 1999 18: 1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bell AC, Felsenfeld G . Stopped at the border: boundaries and insulators Curr Opin Genet Dev 1999 9: 191–198

    Article  CAS  PubMed  Google Scholar 

  22. Walters MC et al. The chicken beta-globin 5′ HS4 boundary element blocks enhancer-mediated suppression of silencing Mol Cell Biol 1999 19: 3714–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung JH, Bell AC, Felsenfeld G . Characterization of the chicken beta-globin insulator Proc Natl Acad Sci USA 1997 94: 575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bell AC, West AG, Felsenfeld G . The protein CTCF is required for enhancer blocking activity of vertebrate insulators Cell 1999 98: 387–396

    Article  CAS  PubMed  Google Scholar 

  25. Chung JH, Whiteley M, Felsenfeld G . A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effects in Drosophila Cell 1993 74: 505–514

    Article  CAS  PubMed  Google Scholar 

  26. Emery DW, Yannaki E, Spyridis J, Stamatoyannopoulos G . A chromatin insulator inhibits negative position effects on retrovirus vector expression in vivo American Society of Gene Therapy, 2nd Annual Meeting of the American Society of Gene Therapy 1999 Vol. abstr. No.951: p240a

  27. Rivella S et al. The insulator cHS4 increases the probability that randomly integrated recombinant retroviruses escape transcriptional silencing: implication for gene therapy American Society of Gene Therapy, Washington, DC, 2nd Annual Meeting of the American Society of Gene Therapy 1999 Vol. abstr. No.66: p17a

    Google Scholar 

  28. Palmiter RD . Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with constitutively active transcription factor, MTF-1 Proc Natl Acad Sci USA 1994 91: 1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Searle PF, Stuart GW, Palmiter RD . Metal regulatory elements of the mouse metallothionein-I gene EXS 1987 52: 407–414

    CAS  Google Scholar 

  30. Nelson J, Kay MA . Persistence of recombinant adenovirus in vivo is not dependent on vector replication J Virol 1997 71: 8902–8907

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barr D et al. Strain related variations in adenoviral mediated transgene expression from mouse hepatocytes in vivo: comparison between immunocompetent and immunodeficient inbred strains Gene Therapy 1995 2: 151–156

    CAS  PubMed  Google Scholar 

  32. Vrancken Peeters M-J, Lieber A, Perkins J, Kay MA . Method for multiple portal vein infusions in mice: quantification of adenovirus-mediated hepatic gene transfer BioTechniques 1996 20: 278–285

    Article  CAS  PubMed  Google Scholar 

  33. Shi Q, Wang Y, Worton R . Modulation of the specificity and activity of a cellular promoter in an adenoviral vector Hum Gene Ther 1997 8: 403–410

    Article  CAS  PubMed  Google Scholar 

  34. Friedman JM, Babiss LE, Clayton DF, Darnell JE Jr . Cellular promoter incorporated into adenovirus genome: cell specificity of albumin and immunoglobulin expression Mol Cell Biol 1986 6: 3791–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Babiss LE, Friedman JM, Darnell JE Jr . Cellular promoter incorporated into adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters Mol Cell Biol 1986 6: 3798–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quantin B, Perricaudet LD, Tajbakhsh S, Mandel J-L . Adenovirus as an expression vector in muscle cells in vivo Proc Natl Acad Sci USA 1992 89: 2581–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Imler J-L et al. Targeting cell type-specific gene expression with an adenovirus vector containing the lacZ gene under the control of the CFTR promoter Gene Therapy 1996 3: 49–58

    CAS  PubMed  Google Scholar 

  38. Ring CJA, Harris JD, Hurst HC, Lemoine NR . Suicide gene expression in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter Gene Therapy 1996 3: 1094–1103

    CAS  PubMed  Google Scholar 

  39. Smale SR, Baltimore D . The ‘initiator’ as a transcriptional control element Cell 1989 57: 103–113

    Article  CAS  PubMed  Google Scholar 

  40. Hitt MM, Addison CL, Graham FL . Human adenoviral vectors for gene transfer into mammalian cells Adv Pharmacol 1997 40: 137–205

    Article  CAS  PubMed  Google Scholar 

  41. Griscelli F et al. Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors Hum Gene Therapy 1998 9: 1919–1928

    Article  CAS  Google Scholar 

  42. Kay MA, Graham F, Leland F, Woo SL . Therapeutic serum concentrations of human alpha1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes Hepatology 1995 21: 815–819

    CAS  PubMed  Google Scholar 

  43. Kellum R, Schedl P . A group of scs elements function as domain boundaries in an enhancer blocking assay Mol Cell Biol 1992 12: 2424–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Workman JL, Taylor ICA, Kingston RE . Activation domains of stably bound Gal4 derivatives alleviate repression of promoters by nucleosomes Cell 1991 64: 533–544

    Article  CAS  PubMed  Google Scholar 

  45. Dunaway M, Hwang JY, Xiong M, Yuen H-L . The activity of the scs and scs′ insulator elements is not dependent on chromosomal context Mol Cell Biol 1997 17: 182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krebs JE, Dunaway M . The scs and scs′ insulator elements impart a cis requirement on enhancer–promoter interactions Mol Cell 1998 1: 301–308

    Article  CAS  PubMed  Google Scholar 

  47. D'ery CV et al. The structure of adenovirus chromatin in infected cells J Gen Virol 1985 66: 2671–2684

    Article  CAS  Google Scholar 

  48. Daniell E, Groff DE, Fedor MJ . Adenovirus chromatin structure at different stages of infection Mol Cell Biol 1981 1: 1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wong ML, Tsu MT . Psoralen-crosslinking study of the organization of intracellular adenovirus nucleoprotein complexes J Virol 1988 62: 1227–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vassaux G, Hurst HC, Lemoine NR . Insulation of a conditionally expressed transgene in an adenoviral vector Gene Therapy 1999 6: 1192–1197

    Article  CAS  PubMed  Google Scholar 

  51. Kistner A et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice Proc Natl Acad Sci USA 1996 93: 10933–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, O'Malley BW Jr, Tsai SY, O'Malley BW . A regulatory system for use in gene transfer Proc Natl Acad Sci USA 1994 91: 8180–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lieber A et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors J Virol 1997 71: 8798–8807

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive elements Proc Natl Acad Sci USA 1992 89: 5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bett AJ, Krougliak V, Graham FL . DNA sequence of deletions/insertions in early region 3 of Ad5 dl309 Virus Res 1995 39: 75–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zong-Yi Li and Greg Priestley for technical assistance. We are grateful to Cheryl Carlson, Dmitry Shayakhmetov, and David Russell for critical discussion. We thank David Emery for providing the HS-4 insulator element and Richard Palmiter for the MRE promoter fragment. This work was supported by the Cystic Fibrosis Foundation, and NIH grants R01 CA80192–01, R21 DK55590–01. DS is a recipient of a predoctoral DAAD fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinwaerder, D., Lieber, A. Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 7, 556–567 (2000). https://doi.org/10.1038/sj.gt.3301139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301139

Keywords

This article is cited by

Search

Quick links