Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Cell-Based Therapy
  • Published:

Cell-Based Therapy

Gene transfer into inflamed glomeruli using macrophages transfected with adenovirus

Abstract

In vivo gene transfer to sites of inflammatory disease provides a novel method both for studying the effects of cytokines and growth factors, and for therapeutic intervention. Macrophages play a pivotal role in the development and control of inflammation and are therefore logical cells to use for genetic modification and in vivo gene delivery. In this study we show that macrophages (both cell lines and primary cultures) can be transfected by recombinant adenoviruses expressing β-galactosidase, that the macrophages become activated by the transfection process as determined by generation of nitric oxide and can be easily manipulated to localise to inflamed glomeruli after direct injection into the renal artery of rats with an experimentally induced glomerular inflammation caused by nephrotoxic nephritis. The injection of transfected macrophages reduces the severity of injury in this model of glomerulonephritis as shown by a reduction in the degree of albuminuria. This approach provides a favourable system for gene delivery in inflammatory disease and shows that both the functional properties of the transfected macrophage as well the transgene it is engineered to produce are relevant for in vivo gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Savill J, Rees AJ . Mechanisms of glomerular injury. In: Davison AM et al (eds) Oxford Textbook of Clinical Nephrology, 2nd edn Oxford University Press: Oxford 1997 403–439

    Google Scholar 

  2. Green SJ, Nacy CA, Meltzer MS . Cytokine induced synthesis of nitric oxide in macrophages: a protective host response to leishmania and other intracellular pathogens J Leuk Biol 1991 50: 93–103

    Article  CAS  Google Scholar 

  3. Imhof BA, Dunon D . Leukocyte migration and adhesion Adv Immunol 1995 58: 345–416

    Article  CAS  PubMed  Google Scholar 

  4. DiPietro LA et al. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair J Clin Invest 1998 101: 1693–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Subramaniam M et al. Role of endothelial selectins in wound repair Am J Pathol 1997 150: 1701–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Meszaros AJ, Reichner JS, Albina JE . Macrophage phagocytosis of wound neutrophils J Leuk Biol 1999 65: 35–42

    Article  CAS  Google Scholar 

  7. Tsuyuki S et al. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways J Clin Invest 1995 96: 2924–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox G, Crossley J, Xing Z . Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo Am J Resp Cell Mol Biol 1995 12: 232–237

    Article  CAS  Google Scholar 

  9. Savill J . Apoptosis in resolution of inflammation J Leuk Biol 1997 61: 375–380

    Article  CAS  Google Scholar 

  10. Grigg JM et al. Neutrophil apoptosis and clearance from neonatal lungs Lancet 1991 338: 720–722

    Article  CAS  PubMed  Google Scholar 

  11. Ajuebor MN et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10 J Immunol 1999 162: 1685–1691

    CAS  PubMed  Google Scholar 

  12. Akbar AN et al. The specific recognition by macrophages of CD8+, CD45RO+ T cells undergoing apoptosis: a mechanism for T cell clearance during resolution of viral infections J Exp Med 1994 180: 1943–1947

    Article  CAS  PubMed  Google Scholar 

  13. Ferkol T, Perales JC, Mularo F, Hanson RW . Receptor-mediated gene transfer into macrophages Proc Natl Acad Sci USA 1996 93: 101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  15. Huang S, Endo RI, Nemerow GR . Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery J Virol 1995 69: 2257–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haddada H et al. Efficient adenovirus-mediated gene transfer into human blood monocyte-derived macrophages Biochem Biophys Res Commun 1993 195: 1174–1183

    Article  CAS  PubMed  Google Scholar 

  17. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  18. Bondeson J et al. Selective regulation of cytokine induction by adenoviral gene transfer of IkBa into human macrophages: lipopolysaccharide-induced, but not zymosan-induced, pro-inflammatory cytokines are inhibited, but IL-10 is nuclear factor kB independent J Immunol 1999 162: 2939–2945

    CAS  PubMed  Google Scholar 

  19. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM . Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  20. Unanue ER, Dixon FJ . Experimental glomerulonephritis: immunological events and pathogenetic mechanisms Adv Immunol 1967 6: 1–90

    Article  CAS  PubMed  Google Scholar 

  21. Jones N, Shenk T . Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells Cell 1979 16: 683–689

    Article  Google Scholar 

  22. Erwig LP, Kluth DC, Walsh GM, Rees AJ . Initial cytokine exposure determines macrophage function and renders them unresponsive to other cytokines J Immunol 1998 161: 1983–1988

    CAS  PubMed  Google Scholar 

  23. Tam FW et al. Interleukin-4 ameliorates experimental glomerulonephritis and up- regulates glomerular gene expression of IL-1 decoy receptor Kidney Int 1997 52: 1224–1231

    Article  CAS  PubMed  Google Scholar 

  24. Karkar AM et al. Abrogation of glomerular injury in nephrotoxic nephritis by continuous infusion of interleukin-6 Kidney Int 1997 52: 1313–1320

    Article  CAS  PubMed  Google Scholar 

  25. Nathan CF, Murray HW, Cohn ZA . The macrophage as an effector cell New Engl J Med 1980 303: 622–626

    Article  CAS  PubMed  Google Scholar 

  26. Seljilid R, Busund L-TR . The biology of macrophages: II inflammation and tumours Eur J Haematol 1994 52: 1–12

    Article  Google Scholar 

  27. Karupiah G et al. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase Science 1993 261: 1445–1448

    Article  CAS  PubMed  Google Scholar 

  28. Smith PD et al. Cytomegalvirus induction of tumour necrosis factor-a by human monocytes and mucosal macrophages J Clin Invest 1992 90: 1642–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henke A et al. Coxsackie B3-induced production of tumour necrosis factor-a, IL-1b and IL-6 in human monocytes J Immunol 1992 148: 2270–2277

    CAS  PubMed  Google Scholar 

  30. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy Proc Natl Acad Sci USA 1994 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guerette B et al. Inflammatory damage following first generation replication-defective adenovirus controlled by anti-LFA-1 J Leuk Biol 1997 61: 533–538

    Article  CAS  Google Scholar 

  32. Morral N et al. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors Hum Gene Ther 1997 8: 1275–1286

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H et al. Inhibition of tumour necrosis factor a decreases inflammation and prolongs adenovirus gene expression in lung and liver Hum Gene Ther 1998 9: 1875–1884

    Article  CAS  PubMed  Google Scholar 

  34. Worgall S et al. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract Hum Gene Ther 1997 8: 1675–1684

    Article  CAS  PubMed  Google Scholar 

  35. Wolff G et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ J Virol 1997 71: 624–629

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tomita N et al. Direct in vivo gene introduction into rat kidney Biochem Biophys Res Commun 1992 186: 129–134

    Article  CAS  PubMed  Google Scholar 

  37. Isaka Y et al. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney J Clin Invest 1993 92: 2597–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heikkila P et al. Adenovirus-mediated gene transfer into kidney glomeruli using an ex vivo and in vivo kidney perfusion system – first steps towards gene therapy of Alport syndrome Gene Therapy 1996 3: 21–27

    CAS  PubMed  Google Scholar 

  39. Moullier P et al. Adenoviral-mediated gene transfer to renal tubular cells in vivo Kidney Int 1994 45: 1220–1225

    Article  CAS  PubMed  Google Scholar 

  40. Sukhatme VP, Cowley BD, Zhu G . Gene transfer into kidney tubules and vasculature by adenoviral vectors Exp Nephrol 1997 5: 137–143

    CAS  PubMed  Google Scholar 

  41. Zeigler ST et al. Molecular conjugate-mediated gene transfer into isolated human kidneys Transplantation 1996 61: 812–817

    Article  CAS  PubMed  Google Scholar 

  42. McDonald GA et al. Enhanced adenoviral gene transfer to kidney vasculature utilizing a fiber modified vector J Am Soc Nephrol 1997 8: 502A (Abstr.)

    Google Scholar 

  43. Kitamura M . Gene delivery into the glomerulus via mesangial cell vectors Exp Nephrol 1997 5: 118–125

    CAS  PubMed  Google Scholar 

  44. Kitamura M, Suto TS . Transfer of genetically engineered macrophages into the glomerulus Kidney Int 1997 51: 1274–1279

    Article  CAS  PubMed  Google Scholar 

  45. Yokoo T et al. Inflamed site specific gene delivery using bone marrow derived CD11b+ CD18+ vehicle cells in mice Hum Gene Ther 1998 9: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  46. Kolb H, Kolb-Bachofen V . Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 1998 19: 556–561

    Article  CAS  PubMed  Google Scholar 

  47. Ghivizzani SC et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal antiarthritic effects Proc Natl Acad Sci USA 1998 95: 4613–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bellingan GJ et al. In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes J Immunol 1996 157: 2577–2585

    CAS  PubMed  Google Scholar 

  49. Tomosugi NI et al. Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1 J Immunol 1989 142: 3083–3090

    CAS  PubMed  Google Scholar 

  50. Graham F, Prevec L. Murray EJ (eds) . Manipulation of adenovirus vectors Methods in Molecular Biology: Gene transfer and expression protocols The Humuna Press: Clifton NJ 1991 pp 109–128

    Chapter  Google Scholar 

  51. Bondi A et al. The use of β-galactosidase as a tracer in immunohistochemistry Histochem 1982 76: 153–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DCK is a Medical Research Council Training Fellow. LPE is supported by the German Research Foundation and the MHH-HILE Programme. WP is supported by the National Kidney Research Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluth, D., Erwig, LP., Pearce, W. et al. Gene transfer into inflamed glomeruli using macrophages transfected with adenovirus. Gene Ther 7, 263–270 (2000). https://doi.org/10.1038/sj.gt.3301060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301060

Keywords

This article is cited by

Search

Quick links