Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer

Abstract

Recombinant adenoviral vectors have a number of advantages for gene therapy, including transduction of a range of dividing and non-dividing cell types. However, this broad range may be a disadvantage if non-target cells are transduced and are adversely affected by expression of the transferred gene. Here we describe a novel adenoviral vector in which transcription of the transgene is restricted to the patho-physiological condition of low oxygen tension (hypoxia). Hypoxia activates the expression of a number of genes, principally via the stabilisation of members of the bHLH/PAS family of transcription factors that bind to a con- sensus DNA sequence, the hypoxia response element (HRE). We have configured an optimised HRE expression cassette into an adenoviral vector, AdOBHRE. A range of cell types, including primary human skeletal muscle, when transduced with AdOBHRE display a low basal level of transgene expression that is highly induced in hypoxia to levels equivalent to that obtained from the CMV promoter. The AdOBHRE vector could be exploited for transcriptionally targeted gene therapy for the treatment of diseases such as cancer, peripheral arterial disease, arthritis and anaemia where tissue hypoxia is a cardinal feature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Dmitriev I et al. An adenovirus vector with genetically modifed fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism J Virol 1998 72: 9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT . Generation of recombinant adenovirus vectors with modified fibers foraltering viral tropism J Virol 1996 70: 6839–6846

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim S et al. Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo J Clin Invest 1997 100: 1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inesi G et al. Cell-specific promoter in adenovirus vector for transgenic expression of SERCA1 ATPase in cardiac myocytes Am J Physiol 1998 274: C645–C653

    Article  CAS  PubMed  Google Scholar 

  6. Bui LA et al. In vivo therapy of hepatocellular carcinoma with a tumor-specific adenoviral vector expressing interleukin-2 Hum Gene Ther 1997 8: 2173–2182

    Article  CAS  PubMed  Google Scholar 

  7. Dusetti NJ et al. The pancreatitis-associated protein I promoter allows targeting to the pancreas of a foreign gene, whose expression is up-regulated during pancreatic inflammation J Biol Chem 1997 272: 5800–5804

    Article  CAS  PubMed  Google Scholar 

  8. Franz WM, Rothmann T, Frey N, Katus HA . Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters Cardiovasc Res 1997 35: 560–566

    Article  CAS  PubMed  Google Scholar 

  9. Larochelle N et al. Efficient muscle-specific transgene expression after adenovirus-mediated gene transfer in mice using a 1.35 kb muscle creatine kinase promoter/enhancer Gene Therapy 1997 4: 465–472

    Article  CAS  PubMed  Google Scholar 

  10. Dachs GU, Stratford IJ . The molecular response of mammalian cells to hypoxia and the potential for exploitation in cancer therapy Br J Cancer 1996 74: S126–S132

    Google Scholar 

  11. Pugh CW et al. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene Proc Natl Acad Sci USA 1991 88: 10553–10557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE . Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene Proc Natl Acad Sci USA 1991 88: 5680–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Y, Cox SR, Morita T, Kourembanas S . Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells Circ Res 1995 77: 638–643

    Article  CAS  PubMed  Google Scholar 

  14. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ . Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer Proc Natl Acad Sci USA 1994 91: 6496–6500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Semenza GL, Roth PH, Fang HM, Wang GL . Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1 J Biol Chem 1994 269: 23757–23763

    CAS  PubMed  Google Scholar 

  16. Wang GL, Semenza GL . Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia J Biol Chem 1993 268: 21513–21518

    CAS  PubMed  Google Scholar 

  17. Kallio PJ et al. Activation of hypoxia-inducible factor 1 alpha: post-transcriptional regulation and conformational change by recruitment of the Arnt transcription factor Proc Natl Acad Sci USA 1997 94: 5667–5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian H, McKnight SL, Russell DW . Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells Genes Dev 1997 11: 72–82

    Article  CAS  PubMed  Google Scholar 

  19. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension Proc Natl Acad Sci USA 1995 92: 5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang LE, Arany Z, Livingston DM, Bunn HF . Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilisation of its α subunit J Biol Chem 1996 271: 32253–32259

    Article  CAS  PubMed  Google Scholar 

  21. Jiang BH, Semenza GL, Bower C, Marti HH . Hypoxia-inducible factor 1 levels vary over a physiologically relevant range of oxygen tension Am J Physiol 1996 271: 1172–1180

    Article  Google Scholar 

  22. Vaupel PW . Oxygenation of solid tumours In: Teicher BA (ed) . Drug Resistance in Oncology Marcel Dekker: New York 1993 pp 53–85

    Google Scholar 

  23. Rothschild BM, Alfonse TM . Pathogenesis of rheumatoid arthritis: a vascular hypothesis Semin Arth Rheum 1982 12: 11–31

    Article  CAS  Google Scholar 

  24. Baumgartner I et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with chronic limb ischemia Circulation 1998 97: 1114–1123

    Article  CAS  PubMed  Google Scholar 

  25. Dachs GU et al. Targeting gene expression to hypoxic tumour cells Nature Med 1997 3: 515–520

    Article  CAS  PubMed  Google Scholar 

  26. Rinsch C et al. A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension Hum Gene Ther 1997 8: 1881–1889

    Article  CAS  PubMed  Google Scholar 

  27. Prentice H et al. Regulated expression of a foreign gene targeted to the ischaemic myocardium Cardiovasc Res 1997 35: 567–574

    Article  CAS  PubMed  Google Scholar 

  28. Setoguchi Y, Danel C, Crystal RG . Stimulation of erythropoiesis by in vivo gene therapy: physiologic consequences of transfer of the human erythropoietin gene to experimental animals using an adenovirus vector Blood 1994 84: 2946–2953

    CAS  PubMed  Google Scholar 

  29. Goldberg MA, Dunning SP, Bunn HF . Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein Science 1988 9: 1412–1415

    Article  Google Scholar 

  30. Marshall DJ, Leiden JM . Recent advances in skeletal-muscle-based gene therapy Curr Opin Genet Dev 1998 8: 360–365

    Article  CAS  PubMed  Google Scholar 

  31. Vaupel P, Schlenger K, Knoop C, Hockel M . Oxygenation of human tumors: evaluation of tissue oxygen distribution inbreast cancers by computerized O2 tension measurements Cancer Res 1991 51: 3316–3322

    CAS  PubMed  Google Scholar 

  32. Brizel DM et al. Tumor hypoxia affects the prognosis of carcinoma of the head and neck Int J Radiat Oncol Biol Phys 1997 38: 285–289

    Article  CAS  PubMed  Google Scholar 

  33. Blatt J . Desferoxamine in children with recurrent neuroblastoma Anticancer Res 1994 14: 2109–2112

    CAS  PubMed  Google Scholar 

  34. Donfrancesco A et al. Deferoxamine followed by cyclophosphamide, etoposide, carboplatin, thiotepa, induction regimen in advanced neuroblastoma: preliminary results. Italian Neuroblastoma Cooperative Group Eur J Cancer 1995 31A: 612–615

    Article  CAS  PubMed  Google Scholar 

  35. Hershko C, Konijn AM, Link G . Iron chelators for thalassaemia Br J Haematol 1998 101: 399–406

    Article  CAS  PubMed  Google Scholar 

  36. Olivieri NF et al. Long term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major New Engl J Med 1998 339: 417–423

    Article  CAS  PubMed  Google Scholar 

  37. Agani F, Semenza GL . Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity Mol Pharmacol 1998 54: 749–754

    Article  CAS  PubMed  Google Scholar 

  38. Zelzer E et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT Embo J 1998 17: 5085–5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wickham TJ, Roelvink DW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotech 1996 14: 1570–1573

    Article  CAS  Google Scholar 

  40. Shi Q, Wang Y, Worton R . Modulation of the specificity and activity of a cellular promoter in an adenoviral vector Hum Gene Ther 1997 8: 403–410

    Article  CAS  PubMed  Google Scholar 

  41. Miller N, Whelan J . Progress in transcriptionally targeted and regulatable vectors for genetic therapy Hum Gene Ther 1997 8: 803–815

    Article  CAS  PubMed  Google Scholar 

  42. Rossi F, Blau H . Recent advances in inducible gene expression systems Curr Opin Biotechnol 1998 9: 451–456

    Article  CAS  PubMed  Google Scholar 

  43. Svensson EC, Tripathy SK, Leiden JM . Muscle-based gene therapy: realistic possibilities for the future Mol Med Today 1996 2: 166–172

    Article  CAS  PubMed  Google Scholar 

  44. Lowenstein PR, Enquist LW . Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders John Wiley: New York 1996

    Google Scholar 

  45. Boast K et al. Characterisation of physiologically regulated vectors for the treatment of ischaemic disease Gene Therapy (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binley, K., Iqball, S., Kingsman, A. et al. An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 6, 1721–1727 (1999). https://doi.org/10.1038/sj.gt.3301001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301001

Keywords

This article is cited by

Search

Quick links