Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors

Abstract

We recently showed that retroviral vectors can be targeted through protease substrate interactions. Infectivity is blocked by a polypeptide fused to the viral envelope glycoprotein (SU) and is restored when a protease cleaves the connecting linker, releasing the inhibitory polypeptide from the viral surface. Protease specificity is achieved by engineering the sequence of the linker. Here, using two different matrix-metalloproteinase (MMP)-activatable vectors, we demonstrated highly efficient and selective transduction of MMP-rich target cells in a heterogeneous cell population. In vivo, the MMP-targeted vectors showed strong selectivity for MMP-rich tumor xenografts. Protease-activatable vectors offer new possibilities for in vivo targeting of gene delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cosset FL, Russel SJ . Targeting retrovirus entry Gene Therapy 1996 3: 946–956

    CAS  PubMed  Google Scholar 

  2. Kasahara N, Dozy AM, Kan YW . Tissue-specific targeting of retroviral vectors through ligand-receptor interactions Science 1994 266: 1373–1376

    Article  CAS  PubMed  Google Scholar 

  3. Somia NV, Zoppe M, Verma IM . Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery Proc Natl Acad Sci USA 1995 92: 7570–7574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ager S et al. Retroviral display of antibody fragments: interdomain spacing strongly influences vector infectivity Hum Gene Ther 1996 7: 2157–2164

    Article  CAS  PubMed  Google Scholar 

  5. Hall FL et al. Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein Hum Gene Ther 1997 8: 2183–2192

    Article  CAS  PubMed  Google Scholar 

  6. Chu TH, Dornburg R . Toward highly efficient cell-type-specific gene transfer with retroviral vectors displaying single-chain antibodies J Virol 1997 71: 720–725

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinter A et al. Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembless the active-site sequence of thiol-disulfide exchange enzymes J Virol 1997 71: 8073–8077

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fass D, Harrison SC, Kim PS . Retrovirus envelope domain at 1.7Å resolution Nat Struct Biol 1996 3: 465–469

    Article  CAS  PubMed  Google Scholar 

  9. Fass D et al. Structure of a murine leukemia virus receptor-binding glycoprotein at 2.0 angstrom resolution Science 1997 277: 1662–1666

    Article  CAS  PubMed  Google Scholar 

  10. Cosset F-L et al. Retroviral retargeting by envelopes expressing an N-terminal binding domain J Virol 1995 69: 6314–6322

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nilson BHK, Morling FJ, Cosset F-L, Russell SJ . Targeting of retroviral vectors through protease–substrate interactions Gene Therapy 1996 3: 280–286

    CAS  PubMed  Google Scholar 

  12. Peng KW et al. A gene delivery system activatable by disease-associated matrix metalloproteinases Hum Gene Ther 1997 8: 729–738

    Article  CAS  PubMed  Google Scholar 

  13. Fielding AK et al. Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells Blood 1998 91: 1802–1809

    CAS  PubMed  Google Scholar 

  14. Peng KW, Morling FJ, Cosset F-L, Russell SJ . A retroviral gene delivery system activatable by plasmin Tumor Targeting 1998 3: 112–120

    CAS  Google Scholar 

  15. Chadwock MP, Morling FJ, Cosset F-L, Russell SJ . Modification of retroviral tropism by display of IGF-I J Mol Biol 1999 285: 485–494

    Article  Google Scholar 

  16. Morling FJ, Peng KW, Cosset F-L, Russel SJ . Masking of retroviral envelope functions by oligomerizing polypeptide adaptors Virology 1997 234: 51–61

    Article  CAS  PubMed  Google Scholar 

  17. Buchholz CJ et al. In vivo selection of protease cleavage sites from retrovirus display libraries Nat Biotech 1998 16: 951–954

    Article  CAS  Google Scholar 

  18. Okada A et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas Proc Natl Acad Sci USA 1995 92: 2730–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murphy G et al. Regulation of matrix metalloproteinase activity Ann NY Acad Sci 1994 732: 31–41

    Article  CAS  PubMed  Google Scholar 

  20. Ray JM, Stetler-Stevenson WG . The role of matrix metalloproteases and their inhibitors in tumor invasion, metasasis and angiogenesis Eur Resp J 1994 7: 2062–2072

    CAS  Google Scholar 

  21. Edwards DR, Murphy G . Proteases-invasion and more Nature 1998 394: 527–528

    Article  CAS  PubMed  Google Scholar 

  22. Duffy MJ . Proteases as prognostic markers in cancer Clin Cancer Res 1996 2: 613–618

    CAS  PubMed  Google Scholar 

  23. Ray JM, Stetler-Stevenson WG . Gelatinase A activity directly modulates melanoma cell adhesion and spreading EMBO J 1995 14: 908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hooper NM, Karran EH, Turner AJ . Membrane protein secretases Biochem J 1997 321: 265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Derian CK, Eckardt AJ, Andrade-Gordon P . Differential regulation of human keratinocyte growth and differentiation by a novel family of protease-activated receptors Cell Growth Differ 1997 8: 743–749

    CAS  PubMed  Google Scholar 

  26. Springett GM et al. Infection efficiency of T-lymphocytes with amphotropic retroviral vectors in cell cycle dependent J Virol 1989 63: 3865–3869

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Naldini L et al. Efficient transfer, integration and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector Proc Natl Acad Sci USA 1996 93: 11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Indraccolo S et al. Psuedotyping of Moloney leukemia virus-based retroviral vectors with simian immunodeficiency virus envelope leads to targeted infection of human CD4+ lymphoid cells Gene Therapy 1998 5: 209–217

    Article  CAS  PubMed  Google Scholar 

  29. Poeschla EM, Wong-Staal F, Looney DJ . Efficient transduction of non-dividing human cells by feline immunodeficiency virus lentiviral vectors Nature Med 1998 4: 354–357

    Article  CAS  PubMed  Google Scholar 

  30. Karpusas M et al. 2Å crystal structure of an extracellular fragment of human CD40 ligand Structure 1995 3: 1031–1039

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi Y et al. Type C retrovirus inactivation by human complement is determined by both the viral genome and producer cell J Virol 1994 68: 8001–8007

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cosset F-L et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum J Virol 1995 69: 7430–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morling FJ, Russel SJ . Enhanced transduction efficiency of retroviral vectors coprecipitated with calcium phosphate Gene Therapy 1995 2: 504–508

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs K Siemering and G Murphy, respectively, for their kind gifts of the GFP expression plasmid, mGFPS65T and the MT1-MMP expressing HT1080 cell line. This work was supported by the UK Medical Research Council Center (KWP and SJR), Mayo and Siebens Foundations (KWP, RGV and SJR), Singapore Nanyang Technological University/National Institute of Education (KWP), Centre National de la Recherche Scientifique (FLC) and Imperial Cancer Research Fund (RGV).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, KW., Vile, R., Cosset, FL. et al. Selective transduction of protease-rich tumors by matrix-metalloproteinase-targeted retroviral vectors. Gene Ther 6, 1552–1557 (1999). https://doi.org/10.1038/sj.gt.3300982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300982

Keywords

This article is cited by

Search

Quick links