Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy in transplantation

Abstract

Facilitation of solid organ and cell transplantation depends on metabolic and immunologic factors that can be manipulated ex vivo and in vivo using gene transfer technology. Vectors have been developed which can optimally transfer relevant genes to various tissues and organs. Interventions aimed at promoting tissue preservation before transplantation, prevention of oxidative stress and immunological rejection have recently become attractive options using viral and nonviral gene delivery vehicles. Further understanding of the mechanisms involved in tolerance induction as well as the facilitation of xenogeneic engraftment have made possible a variety of avenues that can be exploited using gene transfer technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Halloran P . Non-immunologic tissue injury and stress in chronic allograft dysfunction Graft 1998 1: 25–29

    Google Scholar 

  2. Knechtle SJ et al. Histocompatibility and liver transplantation Surgery 1993 114: 667–671; discussion 671–672

    CAS  PubMed  Google Scholar 

  3. Pirsch JD et al. Determinants of graft survival after renal transplantation Transplantation 1996 61: 1581–1586

    CAS  PubMed  Google Scholar 

  4. Perico N, Remuzzi G . Prevention of transplant rejection: current treatment guidelines and future developments Drugs 1997 54: 533–570

    CAS  PubMed  Google Scholar 

  5. Sykes M . Immunobiology of transplantation FASEB J 1996 10: 721–730

    CAS  PubMed  Google Scholar 

  6. Alexander DZ et al. Analysis of effector mechanisms in murine cardiac allograft rejection Transpl Immunol 1996 4: 46–48

    CAS  PubMed  Google Scholar 

  7. Jaeschke H . Reactive oxygen and ischemia/reperfusion injury of the liver Chem Biol Interact 1991 79: 115–136

    CAS  PubMed  Google Scholar 

  8. Nagano H, Tilney NL . Chronic allograft failure: the clinical problem Am J Med Sci 1997 313: 305–309

    CAS  PubMed  Google Scholar 

  9. Tilney NL, Kusaka M, Pratschke J, Wilhelm M . Chronic rejection Transplant Proc 1998 30: 1590–1594

    CAS  PubMed  Google Scholar 

  10. Mueller AR et al. The extracellular matrix: an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation Transplantation 1998 65: 770–776

    CAS  PubMed  Google Scholar 

  11. Wyble CW et al. Physiologic concentrations of TNFalpha and IL-1beta released from reperfused human intestine upregulate E-selectin and ICAM-1 J Surg Res 1996 63: 333–338

    CAS  PubMed  Google Scholar 

  12. De Greef KE et al. Neutrophils and acute ischemia–reperfusion injury (in process citation) J Nephrol 1998 11: 110–122

    CAS  PubMed  Google Scholar 

  13. Weight SC, Bell PR, Nicholson ML . Renal ischaemia–reperfusion injury Br J Surg 1996 83: 162–170

    CAS  PubMed  Google Scholar 

  14. Kurokawa T et al. Mechanism and prevention of ischemia–reperfusion injury of the liver Semin Surg Oncol 1996 12: 179–182

    CAS  PubMed  Google Scholar 

  15. Jaeschke H et al. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophils Toxicol Appl Pharmacol 1996 139: 213–226

    CAS  PubMed  Google Scholar 

  16. Thornton AJ et al. Cytokine-induced gene expression of a neutrophil chemotactic factor/IL-8 in human hepatocytes J Immunol 1990 144: 2609–2613

    CAS  PubMed  Google Scholar 

  17. Lentsch AB et al. Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and Kupffer cells Hepatology 1998 27: 507–512

    CAS  PubMed  Google Scholar 

  18. Lentsch AB et al. Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and KC Hepatology 1998 27: 1172–1177

    CAS  PubMed  Google Scholar 

  19. Frangogiannis NG, Youker KA, Entman ML . The role of the neutrophil in myocardial ischemia and reperfusion Exs 1996 76: 263–284

    CAS  PubMed  Google Scholar 

  20. Gibbs P et al. Adhesion molecule expression (ICAM-1, VCAM-1, E-selectin and PECAM) in human kidney allografts Transpl Immunol 1993 1: 109–113

    CAS  PubMed  Google Scholar 

  21. Yamaguchi Y et al. Monocyte chemoattractant protein-1 enhances expression of intercellular adhesion molecule-1 following ischemia–reperfusion of the liver in rats Hepatology 1998 27: 727–734

    CAS  PubMed  Google Scholar 

  22. Andrews FJ, Malcontenti-Wilson C, O’Brien PE . Expression of adhesion molecules and leukocyte recruitment into gastric mucosa following ischemia–reperfusion Dig Dis Sci 1997 42: 326–332

    CAS  PubMed  Google Scholar 

  23. Taylor PM, Rose ML, Yacoub MH, Pigott R . Induction of vascular adhesion molecules during rejection of human cardiac allografts Transplantation 1992 54: 451–457

    CAS  PubMed  Google Scholar 

  24. Colletti LM et al. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat Hepatology 1996 23: 506–514

    CAS  PubMed  Google Scholar 

  25. Essani NA et al. Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 messenger RNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure Hepatology 1995 21: 1632–1639

    CAS  PubMed  Google Scholar 

  26. Essani NA, McGuire GM, Manning AM, Jaeschke H . Differential induction of mRNA for ICAM-1 and selectins in hepatocytes, Kupffer cells and endothelial cells during endotoxemia Biochem Biophys Res Commun 1995 211: 74–82

    CAS  PubMed  Google Scholar 

  27. Schlayer HJ et al. Involvement of tumor necrosis factor in endotoxin-triggered neutrophil adherence to sinusoidal endothelial cells of mouse liver and its modulation in acute phase J Hepatol 1988 7: 239–249

    CAS  PubMed  Google Scholar 

  28. Meldrum DR et al. Adenosine decreases post-ischaemic cardiac TNF-alpha production: anti-inflammatory implications for preconditioning and transplantation Immunology 1997 92: 472–477

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bottino R et al. Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation Diabetes 1998 47: 316–323

    CAS  PubMed  Google Scholar 

  30. Hancock WH et al. Cytokines, adhesion molecules, and the pathogenesis of chronic rejection of rat renal allografts Transplantation 1993 56: 643–650

    CAS  PubMed  Google Scholar 

  31. Schlayer HJ et al. Enhancement of neutrophil adherence to isolated rat liver sinusoidal endothelial cells by supernatants of lipopolysaccharide-activated monocytes. Role of tumor necrosis factor J Hepatol 1987 5: 311–321

    CAS  PubMed  Google Scholar 

  32. Shirasugi N et al. Up-regulation of oxygen-derived free radicals by interleukin-1 in hepatic ischemia/reperfusion injury Transplantation 1997 64: 1398–1403

    CAS  PubMed  Google Scholar 

  33. Shirasugi N et al. Interleukin-1 receptor blockade attenuates oxygen-derived free radical production and microcirculatory disturbances in ischemia/reperfusion injury in the liver Transplant Proc 1997 29: 371–373

    CAS  PubMed  Google Scholar 

  34. Natori S et al. Prostaglandin E1 protects against ischemia–reperfusion injury of the liver by inhibition of neutrophil adherence to endothelial cells Transplantation 1997 64: 1514–1520

    CAS  PubMed  Google Scholar 

  35. Jaeschke H . Preservation injury: mechanisms, prevention and consequences J Hepatol 1996 25: 774–780

    CAS  PubMed  Google Scholar 

  36. Marubayashi S et al. Protective effect of monoclonal antibodies to adhesion molecules on rat liver ischemia – reperfusion injury Surgery 1997 122: 45–52

    CAS  PubMed  Google Scholar 

  37. Oubenaissa A et al. Evidence for an involvement of the neutrophil integrin lymphocyte function-associated antigen-1 in early failure of heart transplants Circulation 1996 94: II254–259

    CAS  PubMed  Google Scholar 

  38. DeMeester SR et al. Attenuation of rat lung isograft reperfusion injury with a combination of anti-ICAM-1 and anti-beta2 integrin monoclonal antibodies Transplantation 1996 62: 1477–1485

    CAS  PubMed  Google Scholar 

  39. Bulkley GB . Free radical-mediated reperfusion injury: a selective review Br J Cancer Suppl 1987 8: 66–73

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schneeberger H et al. Prevention of acute renal failure after kidney transplantation by treatment with rh-SOD: interim analysis of a double-blind placebo-controlled trial Transplant Proc 1990 22: 2224–2225

    CAS  PubMed  Google Scholar 

  41. Land W et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants Transplantation 1994 57: 211–217

    CAS  PubMed  Google Scholar 

  42. Bennett JF, Bry WI, Collins GM, Halasz NA . The effects of oxygen free radicals on the preserved kidney Cryobiology 1987 24: 264–269

    CAS  PubMed  Google Scholar 

  43. Land W, Zweler JL . Prevention of reperfusion-induced, free radical-mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review Transplant Proc 1997 29: 2567–2568

    CAS  PubMed  Google Scholar 

  44. Lee PH et al. Protective effect of superoxide dismutase and allopurinol on oxygen free radical-induced damage to the kidney Transplant Proc 1992 24: 1353–1354

    CAS  PubMed  Google Scholar 

  45. Mizoe A et al. Preventive effects of superoxide dismutase derivatives modified with monosaccharides on reperfusion injury in rat liver transplantation J Surg Res 1997 73: 160–165

    CAS  PubMed  Google Scholar 

  46. Shiraishi T et al. Free radical-mediated tissue injury in acute lung allograft rejection and the effect of superoxide dismutase Ann Thorac Surg 1997 64: 821–825

    CAS  PubMed  Google Scholar 

  47. Wang P et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury Proc Natl Acad Sci USA 1998 95: 4556–4560

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Woo YJ et al. Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction Circulation 1998 98: II255–260

    CAS  PubMed  Google Scholar 

  49. Zwacka RM et al. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappaB activation Nature Med 1998 4: 698–704

    CAS  PubMed  Google Scholar 

  50. Jaeschke H . Mechanisms of oxidant stress-induced acute tissue injury (see comments) Proc Soc Exp Biol Med 1995 209: 104–111

    CAS  PubMed  Google Scholar 

  51. Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ . Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia Free Radic Res Commun 1991 15: 277–284

    CAS  PubMed  Google Scholar 

  52. Benhamou PY et al. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets Diabetologia 1998 41: 1093–1100

    CAS  PubMed  Google Scholar 

  53. Pattison JM, Krensky AM . New insights into mechanisms of allograft rejection Am J Med Sci 1997 313: 257–263

    CAS  PubMed  Google Scholar 

  54. Jaeschke H, Smith CW . Mechanisms of neutrophil-induced parenchymal cell injury (see comments) J Leukoc Biol 1997 61: 647–653

    CAS  PubMed  Google Scholar 

  55. Farhood A et al. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver J Leukoc Biol 1995 57: 368–374

    CAS  PubMed  Google Scholar 

  56. Springer TA . Adhesion receptors of the immune system Nature 1990 346: 425–434

    CAS  PubMed  Google Scholar 

  57. Isobe M, Yagita H, Okumura K, Ihara A . Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1 Science 1992 255: 1125–1127

    CAS  PubMed  Google Scholar 

  58. Cosimi AB et al. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts J Immunol 1990 144: 4604–4612

    CAS  PubMed  Google Scholar 

  59. Kato Y et al. Specific acceptance of fetal bowel allograft in mice after combined treatment with anti-intercellular adhesion molecule-1 and leukocyte function-associated antigen-1 antibodies Ann Surg 1996 223: 94–100

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaplon RJ et al. Short course single agent therapy with an LFA-3-IgG1 fusion protein prolongs primate cardiac allograft survival Transplantation 1996 61: 356–363

    CAS  PubMed  Google Scholar 

  61. Sultan P et al. Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras Nat Biotechnol 1997 15: 759–762

    CAS  PubMed  Google Scholar 

  62. Gojo S et al. Gene transfer into the donor heart during cold preservation for heart transplantation Ann Thorac Surg 1998 65: 647–652

    CAS  PubMed  Google Scholar 

  63. Drazan KE et al. Adenovirus-mediated gene transfer in the transplant setting. Part III. Variables affecting gene transfer in liver grafts Transplantation 1995 59: 670–673

    CAS  PubMed  Google Scholar 

  64. Shaked A et al. Adenovirus-mediated gene transfer in the transplant setting. II. Successful expression of transferred cDNA in syngeneic liver grafts Transplantation 1994 57: 1508–1511

    CAS  PubMed  Google Scholar 

  65. Csete ME et al. Adenovirus-mediated gene transfer in the transplant setting. I. Conditions for expression of transferred genes in cold-preserved hepatocytes Transplantation 1994 57: 1502–1507

    CAS  PubMed  Google Scholar 

  66. Fanslow WC et al. Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor Science 1990 248: 739–742.

    CAS  PubMed  Google Scholar 

  67. Shiraishi M et al. The inhibitor cytokine interleukin-1 receptor antagonist synergistically augments cyclosporine immunosuppression in a rat cardiac allograft model J Surg Res 1995 58: 465–470

    CAS  PubMed  Google Scholar 

  68. Dana MR, Yamada J, Streilein JW . Topical interleukin 1 receptor antagonist promotes corneal transplant survival Transplantation 1997 63: 1501–1507

    CAS  PubMed  Google Scholar 

  69. Batten P, Yacoub MH, Rose ML . Effect of human cytokines (IFN-gamma, TNF-alpha, IL-1 beta, IL-4) on porcine endothelial cells: induction of MHC and adhesion molecules and functional significance of these changes Immunology 1996 87: 127–133

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bergese et al. Regulation of endothelial VCAM-1 expression in murine cardiac grafts. Roles for TNF and IL4 Am J Pathol 1995 146: 989–998

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Qin L et al. Retrovirus-mediated transfer of viral IL-10 gene prolongs murine cardiac allograft survival J Immunol 1996 156: 2316–2323

    CAS  PubMed  Google Scholar 

  72. Qin L et al. Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Immunosuppression with TGF-beta 1 or vIL-10 Transplantation 1995 59: 809–816

    CAS  PubMed  Google Scholar 

  73. Qin L et al. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen Hum Gene Ther 1997 8: 1365–1374

    CAS  PubMed  Google Scholar 

  74. Drazan KE et al. Transduction of hepatic allografts achieves local levels of viral IL-10 which suppress alloreactivity in vitro J Surg Res 1995 59: 219–223

    CAS  PubMed  Google Scholar 

  75. Drazan KE et al. Adenovirus-mediated gene transfer in the transplant setting: early events after orthotopic transplantation of liver allografts expressing TGF-betal Transplantation 1996 62: 1080–1084

    CAS  PubMed  Google Scholar 

  76. He XY et al. Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses Transplantation 1998 65: 1145–1152

    CAS  PubMed  Google Scholar 

  77. Takeuchi T et al. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Th1 cytokine mRNA in grafts Transplantation 1997 64: 152–157

    CAS  PubMed  Google Scholar 

  78. Rabinovitch A et al. Combined therapy with interleukin-4 and interleukin-10 inhibits autoimmune diabetes recurrence in syngeneic islet-transplanted nonobese diabetic mice. Analysis of cytokine mRNA expression in the graft Transplantation 1995 60: 368–374

    CAS  PubMed  Google Scholar 

  79. Smith DK et al. Interleukin-4 or interleukin-10 expressed from adenovirus-transduced syngeneic islet grafts fails to prevent beta cell destruction in diabetic NOD mice Transplantation 1997 64: 1040–1049

    CAS  PubMed  Google Scholar 

  80. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential use in gene therapy Gene Therapy 1994 1: 136–138

    CAS  PubMed  Google Scholar 

  81. Wiznerowicz M, Fong AZ, Mackiewicz A, Hawley RG . Double-copy bicistronic retroviral vector platform for gene therapy and tissue engineering: application to melanoma vaccine development Gene Therapy 1997 4: 1061–1068

    CAS  PubMed  Google Scholar 

  82. Madsen JC, Superina RA, Wood KJ, Morris PJ . Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes Nature 1988 332: 161–164

    CAS  PubMed  Google Scholar 

  83. Sachs DH et al. Induction of specific tolerance to MHC-disparate allografts through genetic engineering Exp Nephrol 1993 1: 128–133

    CAS  PubMed  Google Scholar 

  84. Madsen JC et al. Transplantation tolerance prevents cardiac allograft vasculopathy in major histocompatibility complex class I-disparate miniature swine Transplantation 1998 65: 304–313

    CAS  PubMed  Google Scholar 

  85. Knechtle SJ et al. Induction of specific tolerance by intrathymic injection of recipient muscle cells transfected with donor class I major histocompatibility complex (see comments) Transplantation 1994 57: 990–996

    CAS  PubMed  Google Scholar 

  86. Knechtle SJ et al. Direct MHC class I complementary DNA transfer to thymus induces donor-specific unresponsiveness, which involves multiple immunologic mechanisms J Immunol 1997 159: 152–158

    CAS  PubMed  Google Scholar 

  87. Larsen CP, Pearson TC . The CD40 pathway in allograft rejection, acceptance, and tolerance Curr Opin Immunol 1997 9: 641–647

    CAS  PubMed  Google Scholar 

  88. Sempowski GD, Rozenblit J, Smith T, Phipps RP . Human orbital fibroblasts are activated through CD40 to induce proinflammatory cytokine production Am J Physiol 1998 274: C707–714

    CAS  PubMed  Google Scholar 

  89. Dechanet J et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells J Immunol 1997 159: 5640–5647

    CAS  PubMed  Google Scholar 

  90. Mach F et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40 ligand signaling in atherosclerosis Proc Natl Acad Sci USA 1997 94: 1931–1936

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kiener PA et al. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes J Immunol 1995 155: 4917–4925

    CAS  PubMed  Google Scholar 

  92. Henn V et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells Nature 1998 391: 591–594

    CAS  PubMed  Google Scholar 

  93. Karmann et al. CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression Proc Natl Acad Sci USA 1995 92: 4342–4346

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yellin MJ et al. Functional interactions of T cells with endothelial cells: the role of CD40L–CD40-mediated signals J Exp Med 1995 182: 1857–1864

    CAS  PubMed  Google Scholar 

  95. Akifusa S et al. Increase in Bcl-2 level promoted by CD40 ligation correlates with inhibition of B cell apoptosis induced by vacuolar type H(+)-ATPase inhibitor Exp Cell Res 1998 238: 82–89

    CAS  PubMed  Google Scholar 

  96. Schauer SL, Bellas RE, Sonenshein GE . Dominant signals leading to inhibitor kappaB protein degradation mediate CD40 ligand rescue of WEHI 231 immature B cells from receptor-mediated apoptosis J Immunol 1998 160: 4398–4405

    CAS  PubMed  Google Scholar 

  97. Sartori A et al. Interleukin-12: an immunoregulatory cytokine produced by B cells and antigen-presenting cells Methods 1997 11: 116–127

    CAS  PubMed  Google Scholar 

  98. Peng X et al. IL-12 up-regulates CD40 ligand (CD154) expression on human T cells J Immunol 1998 160: 1166–1172

    CAS  PubMed  Google Scholar 

  99. Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL . CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model Immunol Rev 1996 153: 47–83

    CAS  PubMed  Google Scholar 

  100. Lenschow DJ, Walunas TL, Bluestone JA . CD28/B7 system of T cell costimulation Annu Rev Immunol 1996 14: 233–258

    CAS  PubMed  Google Scholar 

  101. Schweitzer AN, Sharpe AH . The complexity of the B7-CD28/CTLA-4 costimulatory pathway Agents Actions Suppl 1998 49: 33–43

    CAS  PubMed  Google Scholar 

  102. Rossini AA et al. Induction of immunological tolerance to islet allografts Cell Transplant 1996 5: 49–52

    CAS  PubMed  Google Scholar 

  103. Parker DC et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand Proc Natl Acad Sci USA 1995 92: 9560–9564

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Larsen CP et al. CD40-gp39 interactions play a critical role during allograft rejection. Suppression of allograft rejection by blockade of the CD40–gp39 pathway Transplantation 1996 61: 4–9

    CAS  PubMed  Google Scholar 

  105. Kirk AD et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates Proc Natl Acad Sci USA 1997 94: 8789–8794

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Larsen CP et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways Nature 1996 381: 434–438

    CAS  PubMed  Google Scholar 

  107. Elwood ET et al. Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade Transplantation 1998 65: 1422–1428

    CAS  PubMed  Google Scholar 

  108. Lenschow DJ et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig Science 1992 257: 789–792

    CAS  PubMed  Google Scholar 

  109. Yi-qun Z, Lorre K, de Boer M, Ceuppens JL . B7-blocking agents, alone or in combination with cyclosporin A, induce antigen-specific anergy of human memory T cells J Immunol 1997 158: 4734–4740

    CAS  PubMed  Google Scholar 

  110. Chahine AA et al. Local CTLA4Ig synergizes with one-dose anti-LFA-1 to achieve long-term acceptance of pancreatic islet allografts Transplant Proc 1994 26: 3296

    CAS  PubMed  Google Scholar 

  111. Bluestone JA . Costimulation and its role in organ transplantation Clin Transplant 1996 10: 104–109

    CAS  PubMed  Google Scholar 

  112. Chahine AA, Stoeckert C, Lau HT . Local immunomodulation to promote co-stimulatory blockade Clin Transplant 1995 9: 215–218

    CAS  PubMed  Google Scholar 

  113. Steurer W et al. Ex vivo coating of islet cell allografts with murine CTLA4/Fc promotes graft tolerance J Immunol 1995 155: 1165–1174

    CAS  PubMed  Google Scholar 

  114. Lenschow DJ et al. Inhibition of transplant rejection following treatment with anti-B7-2 and anti-B7-1 antibodies Transplantation 1995 60: 1171–1178

    CAS  PubMed  Google Scholar 

  115. Levisetti MG et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation J Immunol 1997 159: 5187–5191

    CAS  PubMed  Google Scholar 

  116. Chahine AA et al. Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells Transplantation 1995 59: 1313–1318

    CAS  PubMed  Google Scholar 

  117. Gainer AL et al. Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival Transplantation 1997 63: 1017–1021

    CAS  PubMed  Google Scholar 

  118. Olthoff KM et al. Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig Nature Med 1998 4: 194–200

    CAS  PubMed  Google Scholar 

  119. Kita Y et al. Prolonged rat cardiac allograft survival using adenoviral vector containing the CTLA4Ig gene Transplant Proc 1998 30: 1079–1080

    CAS  PubMed  Google Scholar 

  120. Gainer AL et al. Prolongation of allograft survival of transfected islets expressing human CTLA4-Ig, human soluble Fas ligand or a combination of the two Transplant Proc 1998 30: 534

    CAS  PubMed  Google Scholar 

  121. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    CAS  PubMed  Google Scholar 

  122. Steptoe RJ, Thomson AW . Dendritic cells and tolerance induction Clin Exp Immunol 1996 105: 397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu L, Khoury S, Sayegh M, Thomson AW . Dendritic cell tolerogenicity and prospects for therapy of allograft rejection and autoimmune disease. In: Lotze MT, Thomson AW (eds). Dendritic cells: Biology and Clinical Applications Academic Press: San Diego 1998 (in press

  124. Lu L et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients Gene Therapy 1999 6: 554–563

    CAS  PubMed  Google Scholar 

  125. Lee WC et al. Phenotype, function and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engineered to express TGFβ Transplantation 1998 66: 1810–1817

    CAS  PubMed  Google Scholar 

  126. Takayama T et al. Retroviral delivery of viral IL-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T cell hyporesponsiveness Transplantation 1998 66: 1567–1574

    CAS  PubMed  Google Scholar 

  127. Zhang H et al. Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells J Immunol 1999 162: 1423–1430

    CAS  PubMed  Google Scholar 

  128. Zhang HG et al. Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen presenting cells Nat Biotechnol 1998 16: 1045–1049

    CAS  PubMed  Google Scholar 

  129. Nagata S . Fas-mediated apoptosis Adv Exp Med Biol 1996 406: 119–124

    CAS  PubMed  Google Scholar 

  130. Nagata S . Fas-induced apoptosis Intern Med 1998 37: 179–181

    CAS  PubMed  Google Scholar 

  131. Kabelitz D . Apoptosis, graft rejection, and transplantation tolerance Transplantation 1998 65: 869–875

    CAS  PubMed  Google Scholar 

  132. Ferguson TA, Griffith TS . A vision of cell death: insights into immune privilege Immunol Rev 1997 156: 167–184

    CAS  PubMed  Google Scholar 

  133. Lau HT, Yu M, Fontana A, Stoeckert CJ Jr . Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice Science 1996 273: 109–112

    CAS  PubMed  Google Scholar 

  134. Chervonsky AV et al. The role of Fas in autoimmune diabetes Cell 1997 89: 17–24

    CAS  PubMed  Google Scholar 

  135. Kang SM et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction Nature Med 1997 3: 738–743

    CAS  PubMed  Google Scholar 

  136. Stuart PM et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival J Clin Invest 1997 99: 396–402

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Fandrich F et al. CD95L confers immune priviledge to liver grafts which are spontaneously accepted Transplant Proc 1998 30: 1057–1058

    CAS  PubMed  Google Scholar 

  138. Li XK et al. Prolonged survival of recipient rats with Fas-ligand-transfected liver allografts by using HVJ-liposome Transplant Proc 1998 30: 943

    CAS  PubMed  Google Scholar 

  139. Suda T et al. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing J Exp Med 1997 186: 2045–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Swenson KM et al. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival Transplantation 1998 65: 155–160

    CAS  PubMed  Google Scholar 

  141. Hanabuchi S et al. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity Proc Natl Acad Sci USA 1994 91: 4930–4934

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM . FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis Cell 1995 81: 505–512

    CAS  PubMed  Google Scholar 

  143. Zhang J et al. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1 Nature 1998 392: 296–300

    CAS  PubMed  Google Scholar 

  144. Ray CA et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme Cell 1992 69: 597–604

    CAS  PubMed  Google Scholar 

  145. Itoh N, Tsujimoto Y, Nagata S . Effect of bcl-2 on Fas antigen-mediated cell death J Immunol 1993 151: 621–627

    CAS  PubMed  Google Scholar 

  146. Tsujimoto Y et al. Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways Leukemia 1997 11 (Suppl. 3): 380–382

    Google Scholar 

  147. Shimizu S et al. Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL Cancer Res 1996 56: 2161–2166

    CAS  PubMed  Google Scholar 

  148. Shimizu S et al. Bcl-2 expression prevents activation of the ICE protease cascade Oncogene 1996 12: 2251–2257

    CAS  PubMed  Google Scholar 

  149. Yoshimura S et al. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation J Biol Chem 1998 273: 6921–6927

    CAS  PubMed  Google Scholar 

  150. Shimizu S et al. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux Proc Natl Acad Sci USA 1998 95: 1455–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kondo S et al. Transfection with a bcl-2 expression vector protects transplanted bone marrow from chemotherapy-induced myelosuppression Cancer Res 1994 54: 2928–2933

    CAS  PubMed  Google Scholar 

  152. Yamabe K et al. Prevention of hypoxic liver cell necrosis by in vivo human bcl-2 gene transfection Biochem Biophys Res Commun 1998 243: 217–223

    CAS  PubMed  Google Scholar 

  153. Platt JL . New directions for organ transplantation Nature 1998 392: 11–17

    CAS  PubMed  Google Scholar 

  154. Platt JL . Approaching the clinical application of xenotransplantation Am J Med Sci 1997 313: 315–321

    CAS  PubMed  Google Scholar 

  155. Platt JL . A perspective on xenograft rejection and accommodation Immunol Rev 1994 141: 127–149

    CAS  PubMed  Google Scholar 

  156. Lin SS et al. The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants J Clin Invest 1998 101: 1745–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cotterell AH et al. The humoral immune response in humans following cross-perfusion of porcine organs Transplantation 1995 60: 861–868

    CAS  PubMed  Google Scholar 

  158. Leventhal JR et al. Removal of baboon and human antiporcine IgG and IgM natural antibodies by immunoadsorption. Results of in vitro and in vivo studies Transplantation 1995 59: 294–300

    CAS  PubMed  Google Scholar 

  159. Sandrin MS et al. Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis (see comments) Nature Med 1995 1: 1261–1267

    CAS  PubMed  Google Scholar 

  160. McKenzie IF et al. Strategies to overcome the anti-Gal alpha (1–3)Gal reaction in xenotransplantation Transplant Proc 1996 28: 537

    CAS  PubMed  Google Scholar 

  161. Takahashi T, Saadi S, Platt JL . Recent advances in the immunology of xenotransplantation Immunol Res 1997 16: 273–297

    CAS  PubMed  Google Scholar 

  162. Schmoeckel M et al. Orthotopic heart transplantation in a transgenic pig-to-primate model Transplantation 1998 65: 1570–1577

    CAS  PubMed  Google Scholar 

  163. Byrne GW et al. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage Transplantation 1997 63: 149–155

    CAS  PubMed  Google Scholar 

  164. Pruitt SK et al. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection Transplantation 1991 52: 868–873

    CAS  PubMed  Google Scholar 

  165. Osman N et al. Combined transgenic expression of alpha-galactosidase and alpha,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha(1,3)Gal Proc Natl Acad Sci USA 1997 94: 14677–14682

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sandrin MS, Osman N, McKenzie IF . Transgenic approaches for the reduction of Galalpha(1,3)Gal for xenotransplantation Front Biosci 1997 2: e1–e11

    CAS  PubMed  Google Scholar 

  167. Campbell KH, Loi P, Otaegui PJ, Wilmut I . Cell cycle co-ordination in embryo cloning by nuclear transfer Rev Reprod 1996 1: 40–46

    CAS  PubMed  Google Scholar 

  168. Wakayama et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei Nature 1998 394: 369–374

    CAS  PubMed  Google Scholar 

  169. Bracy JL, Sachs DH, Iacomini J . Inhibition of xenoreactive natural antibody production by retroviral gene therapy Science 1998 281: 1845–1847

    CAS  PubMed  Google Scholar 

  170. Petersson E et al. Allogeneic heart transplantation activates alloreactive NK cells Cell Immunol 1997 175: 25–32

    CAS  PubMed  Google Scholar 

  171. Tran TH et al. Regulated and endothelial cell-specific expression of Fas ligand: an in vitro model for a strategy aiming at inhibiting xenograft rejection Transplantation 1998 66: 1126–1131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the insightful comments of Dr Adrian Morelli on this review. This work was supported in part by Public Health Services grant DK 44935 to PDR and AI 41011 to AWT. NG is a recipient of a postdoctoral fellowship award from the Juvenile Diabetes Foundation International as well as a prize from the Fonds pour la formation de chercheurs et a l’aide a la recherche (Fonds FCAR) from the provincial government of Quebec, Canada.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannoukakis, N., Thomson, A. & Robbins, P. Gene therapy in transplantation. Gene Ther 6, 1499–1511 (1999). https://doi.org/10.1038/sj.gt.3300981

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300981

Keywords

This article is cited by

Search

Quick links