Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications

Abstract

We have systematically investigated the therapeutic potential of cationic liposome-mediated neurotrophic gene transfer for treatment of CNS injury. Following determination of optimal transfection conditions, we examined the effects of dimethylaminoethane-carbamoyl-cholesterol (DC-Chol) liposome-mediated NGF cDNA transfection in injured and uninjured primary septo-hippocampal cell cultures and rat brains. In in vitro studies, we detected an increase of NGF mRNA in cultures 1 day after transfection. Subsequent ELISA and PC12 cell biological assays confirmed that cultured cells secreted soluble active NGF into the media from day 2 after gene transfection. Further experiments showed that such NGF gene transfection reduced the loss of chol- ine acetyltransferase (ChAT) activity in cultures following calcium-dependent depolarization injury. In in vivo studies, following intraventricular injections of NGF cDNA complexed with DC-Chol liposomes, ELISA detected nine- to 12-fold increases of NGF in rat CSF. Further studies showed that liposome/NGF cDNA complexes could attenuate the loss of cholinergic neuronal immunostaining in the rat septum after traumatic brain injury (TBI). Since deficits in cholinergic neurotransmission are a major consequence of TBI, our studies demonstrate for the first time that DC-Chol liposome-mediated NGF gene transfection may have therapeutic potential for treatment of brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hefti F . Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections J Neurosci 1986 8: 2155–2162

    Google Scholar 

  2. Kromer LF . Nerve growth factor treatment after brain injury prevents neuronal death Science 1987 235: 214–216

    CAS  PubMed  Google Scholar 

  3. Williams LR et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection Proc Natl Acad Sci USA 1986 83: 9231–9235

    CAS  PubMed  Google Scholar 

  4. Rosenberg MB et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression Science 1988 242: 1575–1578

    CAS  PubMed  Google Scholar 

  5. Hagg T, Varon S . Neurotropism of nerve growth factor for adult rat septal cholinergic axons in vivo Exp Neurol 1993 119: 37–45

    CAS  PubMed  Google Scholar 

  6. Fischer W, Bjorklund A, Chen K, Gage FH . NGF improves spatial memory in aged rodents as a function of age J Neurosci 1991 11: 1889–1906

    CAS  PubMed  Google Scholar 

  7. Fischer W, Bjorklund A . Loss of AchE and NGFr-labeling precedes neuronal death of axotomized septodiagonal band neurons: reversal by intraventricular NGF infusion Exp Neurol 1991 113: 93–108

    CAS  PubMed  Google Scholar 

  8. Rylett RJ, Goddard S, Schmidt BM, Williams LR . Acetylcholine synthesis and release following continuous intracerebral administration of NGF in adult and aged Fischer-344 rats J Neurosci 1993 13: 3956–3963

    CAS  PubMed  Google Scholar 

  9. Dekker AJ, That L . Effect of delayed treatment with nerve growth factor on choline acetyltransferase activity in the cortex of rats with lesions of the nucleus basalis magnocellularis: dose requirements Brain Res 1992 584: 55–63

    CAS  PubMed  Google Scholar 

  10. Dekker AJ, Ray WJ, Tha LJ, Gage FH . Grafting of nerve growth factor-producing fibroblasts reduces behavioral deficits in rats with lesions of the nucleus basalis magnocellularis Neuroscience 1994 60: 299–309

    CAS  PubMed  Google Scholar 

  11. Dixon CE et al. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats Exp Neurol 1997 146: 479–490

    CAS  PubMed  Google Scholar 

  12. McDermott KL et al. Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in the rat J Neurotrauma 1997 14: 191–198

    CAS  PubMed  Google Scholar 

  13. Lawrence MS et al. Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo J Neurosci 1996 16: 486–496

    CAS  PubMed  Google Scholar 

  14. Lawrence MS et al. Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered after a stroke J Cereb Blood Flow Metab 1997 17: 740–744

    CAS  PubMed  Google Scholar 

  15. Yoon SO et al. Adenovirus-mediated gene delivery into neuronal precursors of the adult mouse brain Proc Natl Acad Sci USA 1996 93: 11974–11979

    CAS  PubMed  Google Scholar 

  16. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    CAS  PubMed  Google Scholar 

  17. Naldini L et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector Proc Natl Acad Sci USA 1996 93: 11382–11388

    CAS  PubMed  Google Scholar 

  18. Karpati G, Lochmuller H, Nalbantoglu J, Durham H . The principles of gene therapy for the nervous system Trends Neurosci 1996 19: 49–54

    CAS  PubMed  Google Scholar 

  19. Castel-Barthe MN et al. Direct intracerebral nerve growth factor gene transfer using a recombinant adenovirus: effect on basal forebrain cholinergic neurons during aging Neurobiol Dis 1996 3: 76–86

    CAS  PubMed  Google Scholar 

  20. Choi-Lundberg DL et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy Science 1997 275: 838–841

    CAS  Google Scholar 

  21. Baumgartner BJ, Shine HD . Targeted transduction of CNS neurons with adenoviral vectors carrying neurotrophic factor genes confers neuroprotection that exceeds the transduced population J Neurosci 1997 17: 6504–6511

    CAS  PubMed  Google Scholar 

  22. Yang GY, Zhao YJ, Davidson BL, Betz AL . Overexpression of interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury Brain Res 1997 751: 181–188

    CAS  PubMed  Google Scholar 

  23. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure Proc Natl Acad Sci USA 1987 84: 7413–7417

    CAS  PubMed  Google Scholar 

  24. Felgner PL . Improvements in cationic liposomes for in vivo gene transfer Hum Gene Ther 1996 7: 1791–1793

    CAS  PubMed  Google Scholar 

  25. Nabel GL . Direct gene transfer with DNA liposome complexes in melanoma: expression, biological activity, lack of toxicity in humans Proc Natl Acad Sci USA 1993 90: 11307–11311

    CAS  PubMed  Google Scholar 

  26. Zhu N, Liggitt D, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 209–211

    CAS  PubMed  Google Scholar 

  27. Roessler B, Davidson BL . Direct plasmid mediated transfection of adult murine brain cells in vivo using cationic liposomes Neurosci Lett 1994 167: 5–10

    CAS  PubMed  Google Scholar 

  28. Gao X, Huang L . Cationic liposome-mediated gene transfer Gene Therapy 1995 2: 710–722

    CAS  PubMed  Google Scholar 

  29. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    CAS  PubMed  Google Scholar 

  30. Yang K, Clifton GL, Hayes RL . Gene therapy for central nervous system injury: the use of cationic liposomes: an invited review J Neurotrauma 1997 14: 281–297

    CAS  PubMed  Google Scholar 

  31. McIntosh TK, Juhler M, Wieloch T . Novel pharmacological strategies in the treatment of experimental traumatic brain injury: 1998 J Neurotrauma 1998 15: 731–769

    CAS  PubMed  Google Scholar 

  32. Le W et al. Liposome-mediated NGF gene transfection increases ChAT activity in rat septo-hippocampal cell cultures NeuroReport 1996 7: 710–712

    CAS  PubMed  Google Scholar 

  33. Yang K et al. DC-Chol liposome-mediated gene transfer in rat spinal cord NeuroReport 1997 8: 2355–2358

    CAS  PubMed  Google Scholar 

  34. Yang K et al. Optimizing liposome-mediated gene transfer in primary rat septo-hippocampal cell cultures Neurosci Lett 1994 182: 287–290

    CAS  PubMed  Google Scholar 

  35. Whitson JS et al. Brief potassium depolarization decreases neurofilament proteins in CNS culture Brain Res 1995 694: 213–222

    CAS  PubMed  Google Scholar 

  36. Suhr ST, Gage FH . Gene therapy for neurologic disease Arch Neurol 1993 50: 1252–1268

    CAS  PubMed  Google Scholar 

  37. Doran SE et al. Gene expression from recombinant viral vectors in the central nervous system after blood–brain barrier disruption Neurosurgery 1995 36: 965–970

    CAS  PubMed  Google Scholar 

  38. Thorsell A, Lomqvist AG, Heilig M . Cationic lipid-mediated delivery and expression of prepro-neuropeptide Y cDNA after intraventricular administration in rat: feasibility and limitations Reg Pept 1996 61: 205–211

    CAS  Google Scholar 

  39. Caplen NJ et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis Nature Med 1995 1: 39–46

    CAS  PubMed  Google Scholar 

  40. Fasbender A et al. Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo Gene Therapy 1997 4: 716–725

    CAS  PubMed  Google Scholar 

  41. Hayes RL et al. Rescue of injury-induced loss by BDNF gene transfection in primary septo-hippocampal cell cultures Neurosci Lett 1995 191: 121–125

    CAS  PubMed  Google Scholar 

  42. Frick KM, Price DL, Koliatsos VE, Markowska AL . The effects of nerve growth factor on spatial recent memory in aged rats persist after discontinuation of treatment J Neurosci 1997 17: 2543–2550

    CAS  PubMed  Google Scholar 

  43. Martinez-Serrano A, Hantzopoulos PA, Bjorklund A . Ex vivo gene transfer of brain-derived neurotrophic factor to the intact rat forebrain: neurotrophic effects on cholinergic neurons Eur J Neurosci 1996 8: 727–735

    CAS  PubMed  Google Scholar 

  44. Sinson G, Voddi M, McIntosh TK . Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats J Neurochem 1995 65: 2209–2216

    CAS  PubMed  Google Scholar 

  45. Sinson G, Voddi M, McIntosh TK . Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat J Neurosurg 1996 84: 665–662

    Google Scholar 

  46. Batchelor PE et al. Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: response to fimbria-fornix transection J Comp Neurol 1989 284: 187–204

    CAS  PubMed  Google Scholar 

  47. Winn SR et al. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons Proc Natl Acad Sci USA 1994 91: 2324–2328

    CAS  PubMed  Google Scholar 

  48. Alderson RF, Alterman AL, Barde YA, Lindsay RM . Brain derived neurotrophic factor increases survival and differentiated functions of rat sepral cholinergic neurons Neuron 1990 5: 297–306

    CAS  PubMed  Google Scholar 

  49. Scali C et al. Nerve growth factor increases extracellular acetylcholine levels in the parietal cortex and hippocampus of aged rats and restores object recognition Neurosci Lett 1994 170: 117–120

    CAS  PubMed  Google Scholar 

  50. Tuszynski MH, Gage FH . Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery Proc Natl Acad Sci USA 1995 92: 4621–4625

    CAS  PubMed  Google Scholar 

  51. Tuszynsk MH, Roberts J, Senut M-C, Gage FH . Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration Gene Therapy 1996 3: 305–314

    Google Scholar 

  52. Roner S et al. Effects of intraventricular transplantation of NGF-secreting cells on cholinergic basal forebrain neurons after partial immunolesion J Neurosci Res 1996 45: 40–56

    Google Scholar 

  53. Imaoka T, Date I, Ohmoto T, Nagatsu T . Significant behavioral recovery in Parkinson’s disease model by direct intracerebral gene transfer using continuous injection of a plasmid DNA-liposome complex Hum Gene Ther 1998 9: 1093–1102

    CAS  PubMed  Google Scholar 

  54. Zhang LX, Wu M, Han JS . Suppression of audiogenic epileptic seizures by intracerebral injection of a CCK gene vector NeuroReport 1992 3: 700–702

    CAS  PubMed  Google Scholar 

  55. Zhang LX et al. Lipofectin-facilitated transfer of cholecystokinin gene corrects behavioral abnormalities of rats with audiogenic seizures Neuroscience 1997 77: 15–22

    CAS  PubMed  Google Scholar 

  56. Yang K et al. Liposome-mediated NGF gene transfection increases phosphorylated neurofilament proteins Mol Brain Res 1996 43: 13–20

    CAS  PubMed  Google Scholar 

  57. Qiu YH et al. Activation of phosphatidylinositol 3 kinase by BDNF gene transfection in septo-hippocampal cultures J Neurosci Res 1998 52: 192–200

    CAS  PubMed  Google Scholar 

  58. Banker GA, Cowan WM . Rat hippocampal neurons in dispersed cell culture Brain Res 1977 126: 397–425

    CAS  PubMed  Google Scholar 

  59. Brewer GJ, Cotman CW . Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen Brain Res 1989 494: 65–74

    CAS  PubMed  Google Scholar 

  60. Yang K et al. Sustained expression of functional nerve growth factor in primary septohippocampal cell cultures by liposome-mediated gene transfer Neurosci Lett 1994 182: 291–294

    CAS  PubMed  Google Scholar 

  61. Yang K et al. In vitro studies of liposome-mediated gene transfection In: Perez-Polo JR (ed) . Paradigms in Neural Injury Academic Press: San Diego 1995 pp 290–297

    Google Scholar 

  62. Dixon CE et al. A controlled cortical impact model of traumatic brain injury in the rat J Neurosci Meth 1991 39: 253–262

    CAS  Google Scholar 

  63. Iwamoto Y et al. BDNF cDNA following liposome-mediated gene transfer in intact and traumatically injured rat brain NeuroReport 1996 7: 609–612

    CAS  PubMed  Google Scholar 

  64. Greene LA, Tischler AS . Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to NGF Proc Natl Acad Sci USA 1976 73: 2424–2428

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, RO1-NS35502 to K Yang, CA 64654 to L Huang and RO1-NS21458 to R Hayes. Texas Higher Education Coordinating Board grants ARP 011618–100 and ATP 004949–049 to K Yang and the Vivian L Smith Center for Neurologic Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, L., Huang, L., Hayes, R. et al. Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther 6, 994–1005 (1999). https://doi.org/10.1038/sj.gt.3300936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300936

Keywords

This article is cited by

Search

Quick links