Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Therapeutic efficacy of the thymidine kinase/ganciclovir system on large experimental gliomas: a nuclear magnetic resonance imaging study

Abstract

Contradictory experimental results and human trials have questioned the clinical relevance of the HSVtk/ganciclovir system. To bypass the problem of transfection efficiency, we used a glioma cell line stably expressing the HSVtk gene, which was also fully characterized from gene to protein. We also designed a more clinically relevant experimental protocol, consisting of late GCV delivery on large tumor formations. In short-term studies, histological examination revealed a significant decrease in tumor volume in GCV-treated animals from day 1 or from day 10 after cell inoculation. We observed that late GCV delivery is as efficient as early delivery, probably because GCV can reach tumor cells more easily when neoangiogenesis occurs. In long-term experiments, the survival of treated rats bearing 15-day tumors was improved by 60% compared with C6 control animals. Surprisingly, a 30% survival rate was observed in C6TK control animals. Nuclear magnetic resonance imaging demonstrated, in all surviving animals, a complete regression of tumors without mass effect. These results clearly demonstrate that the HSVtk/GCV system remains a potent therapeutic strategy, even when tested in large tumors, in contrast with the microscopic tumor formations previously reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 6
Figure 8

Similar content being viewed by others

References

  1. Ahsan H, Neugut AI, Bruce JN . Trends in incidence of primary malignant brain tumors in USA, 1981–1990 Int J Epidemiol 1995 24: 1078–1085

    CAS  PubMed  Google Scholar 

  2. Walker MD et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery New Eng J Med 1980 303: 1323–1329

    CAS  PubMed  Google Scholar 

  3. Mahaley MS Jr et al. National survey of patterns of care for brain-tumor patients JNeurosurg 1989 71: 826–836

    Google Scholar 

  4. Kim TS, Hallidary AL, Hedley-Whyte ET, Convey K . Correlates of survival and the Daumans–Duport grading system for astrocytoma J Neurosurg 1991 74: 27–37

    CAS  PubMed  Google Scholar 

  5. Black PM . Brain tumors New Engl J Med 1991 324: 1555–1564

    CAS  PubMed  Google Scholar 

  6. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    CAS  PubMed  Google Scholar 

  7. Kornblith PK, Welch WC, Bradley MK . The future of therapy for glioblastoma Surg Neurol 1993 39: 538–543

    CAS  PubMed  Google Scholar 

  8. Mizuno M, Yoshida J . Gene therapy for brain tumors Nippon Rinsho 1997 55: 1853–1860

    CAS  PubMed  Google Scholar 

  9. Hoang-Xuan K, Li YJ, Hamelin R, Delattre O . Molecular biology in cerebral gliomas: recent advances Rev Neurol (Paris) 1995 151: 608–618

    CAS  Google Scholar 

  10. Scheck AC et al. Biological and molecular analysis of a low-grade recurrence of a glioblastoma multiforme Clin Cancer Res 1996 2: 187–199

    CAS  PubMed  Google Scholar 

  11. Ezzedine ZD et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene New Biol 1991 3: 608–614

    CAS  Google Scholar 

  12. Chen SH et al. Gene therapy for brain tumors: regression of experimental gliomas with adenovirus-mediated gene transfer in vivo Proc Natl Acad Sci USA 1994 91: 3054–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Elion GB . Mechanism of action and selectivity of acyclovir Am J Med 1982 73: 7–13

    CAS  PubMed  Google Scholar 

  14. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy Cancer Res 1986 46: 5276–5281

    CAS  PubMed  Google Scholar 

  15. Plautz G, Nabel EG, Nabel GJ . Selective elimination of recombinant genes in vivo with a suicide retroviral vector New Biol 1991 3: 709–715

    CAS  PubMed  Google Scholar 

  16. Moolten FL . Drug sensitivity (‘suicide’) genes for selective cancer chemotherapy Cancer Gene Ther 1994 1: 279–287

    CAS  PubMed  Google Scholar 

  17. Barba D, Hardin J, Ray J, Gage F . Thymidine kinase-mediated killing of rat brain tumors J Neurosurg 1993 79: 729–735

    CAS  PubMed  Google Scholar 

  18. Izquierdo M et al. Long-term rat survival after malignant brain tumor regression by retroviral gene therapy Gene Therapy 1995 2: 66–69

    CAS  PubMed  Google Scholar 

  19. Maron A et al. Gene therapy of rat C6 glioma using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene: long-term follow-up by magnetic resonance imaging Gene Therapy 1996 3: 315–322

    CAS  PubMed  Google Scholar 

  20. Zhu J et al. A continuous intracerebral gene delivery system for in vivo liposome-mediated gene therapy Gene Therapy 1996 3: 472–476

    CAS  PubMed  Google Scholar 

  21. Sugaya S et al. Inhibition of tumor growth by direct intratumoral gene transfer of herpes simplex virus thymidine kinase gene with DNA–liposome complexes Hum Gene Ther 1996 7: 223–230

    CAS  PubMed  Google Scholar 

  22. Tamura M et al. Targeted killing of migrating glioma cells by injection of HTK-modified glioma cells Hum Gene Ther 1997 8: 381–391

    PubMed  Google Scholar 

  23. Caruso M et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene Proc Natl Acad Sci USA 1993 90: 7024–7028

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Moolten FL, Wells JM, Heyman RA, Evans RM . Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene Hum Gene Ther 1990 1: 125–134

    CAS  PubMed  Google Scholar 

  25. Osaki T et al. Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene Cancer Res 1994 54: 5258–5261

    CAS  PubMed  Google Scholar 

  26. Vile GR, Hart IR . Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA Cancer Res 1993 53: 3860–3864

    CAS  PubMed  Google Scholar 

  27. Bonnekoh B et al. Inhibition of melanoma growth by adenoviral-mediated HSV thymidine kinase gene transfer in vivo J Invest Dermatol 1995 104: 313–317

    CAS  PubMed  Google Scholar 

  28. Golumbek PT et al. Herpes simplex-1 virus thymidine kinase gene is unable to completely eliminate live, nonimmunogenic tumor cell vaccines J Immunother 1992 12: 224–230

    CAS  PubMed  Google Scholar 

  29. Takamiya Y et al. An experimental model of retrovirus gene therapy for malignant brain tumors J Neurosurg 1993 79: 104–110

    CAS  PubMed  Google Scholar 

  30. Cool V et al. Curative potential of herpes simplex virus thymidine kinase gene transfer in rats with 9L gliosarcoma Hum Gene Ther 1996 7: 627–635

    CAS  PubMed  Google Scholar 

  31. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    CAS  PubMed  Google Scholar 

  32. Deliganis AV et al. Serial MR in gene therapy for recurrent glioblastoma: initial experience and work in progress Am J Neuroradiol 1997 18: 1401–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen CY et al. Effect of herpes simplex virus thymidine kinase expression levels on ganciclovir-mediated cytotoxicity and the ‘bystander effect’ Hum Gene Ther 1995 6: 1467–1476

    CAS  PubMed  Google Scholar 

  34. Iwadate Y et al. In vivo bystander effect in the intracranial model with rat glioma cells reflects the clonal difference of HSV-TK positive cells Int J Oncol 1996 9: 521–525

    CAS  PubMed  Google Scholar 

  35. Beck C et al. The thymidine kinase/ganciclovir-mediated ‘suicide’ effect is variable in different tumor cells Hum Gene Ther 1995 6: 1525–1530

    CAS  PubMed  Google Scholar 

  36. Sturtz FG et al. Variable efficiency of the thymidine kinase/ganciclovir system in human glioblastoma cell lines: implications for gene therapy Hum Gene Ther 1997 8: 1945–1953

    CAS  PubMed  Google Scholar 

  37. Tapscott SJ et al. Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection Proc Natl Acad Sci USA 1994 91: 8185–8189

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Benedetti S et al. Limited Efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene Hum Gene Ther 1997 8: 1345–1353

    CAS  PubMed  Google Scholar 

  39. Barth RF . Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas J Neurooncol 1998 36: 91–102

    CAS  PubMed  Google Scholar 

  40. Benabid AL, Remy C, Chauvin C . Experimental models of rat brain tumors by stereotaxic injection of C6 glioma and HTC hepatoma cell lines. In: Walker and Thomas (eds) . Biology of Brain Tumor Martinus Nijhoff: Boston 1986 221–226

    Google Scholar 

  41. Ram Z et al. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vaculature and growth of 9L gliomas in rats J Neurosurg 1994 81: 256–260

    CAS  PubMed  Google Scholar 

  42. LeMay DR et al. Intravenous RMP-7 increases delivery of ganciclovir into rat brain tumors and enhances the effects of herpes simplex virus thymidine kinase gene therapy Hum Gene Ther 1998 9: 989–995

    CAS  PubMed  Google Scholar 

  43. Plate KH, Risau H . Angiogenesis in malignant gliomas Glia 1995 15: 339–347

    CAS  PubMed  Google Scholar 

  44. Abina MA et al. Lac Z gene transfer into tumor cells abrogates tumorigenicity and protects mice against the development of further tumors Gene Therapy 1996 3: 212–216

    CAS  PubMed  Google Scholar 

  45. Moolten FL, Wells JM, Mroz PJ . Multiple transduction as a means of preserving ganciclovir chemosensitivity in sarcoma cells carrying retrovirally transduced herpes thymidine kinase genes Cancer Lett 1992 64: 257–263

    CAS  PubMed  Google Scholar 

  46. Hamel W, Magnelli L, Chiarugi VP, Israel MA . Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells Cancer Res 1996 56: 2697–2702

    CAS  PubMed  Google Scholar 

  47. Freeman SM et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified Cancer Res 1993 53: 5274–5283

    CAS  PubMed  Google Scholar 

  48. Thomas KR, Capecchi MR . Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells Cell 1987 51: 503–512.

    CAS  PubMed  Google Scholar 

  49. Apt KE, Kroth-Pancic PG, Grossman AR . Stable nuclear transformation of the diatom Phaeodactylum tricornutum Mol Gen Genet 1996 252: 572–579

    CAS  PubMed  Google Scholar 

  50. Kobayashi NN, Allen N, Clendenon NR, Li-Wen KO . An improved rat brain tumor model J Neurosurg 1980 53: 808–815

    CAS  PubMed  Google Scholar 

  51. Fyfe JA et al. Thymidine kinase from herpes simplex virusphosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethy) guanine J Biol Chem 1978 253: 8721–8727

    CAS  PubMed  Google Scholar 

  52. Montero-Menei CN et al. Liposaccharide intracerebral administration induces minimal inflammatory reaction in rat brain Brain Res 1994 653: 101–111

    CAS  PubMed  Google Scholar 

  53. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations J Am Stat 1958 53: 457–481.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr J Janicot (Rhone-Poulenc Rorer Gencell) for the polyclonal rabbit-anti-HSV/TK serum and Dr R Barnoud for the Factor VIII immunological study. This work was supported by grants from the Centre d’application et Réseau de Thérapie Génique (Ministère de la Santé, Fondation pour la Recherche Médicale, Association Française de lutte contre les Myopathies, Ligue Contre le Cancer), ARC and Espoir.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouali-Benazzouz, R., Lainé, M., Vicat, J. et al. Therapeutic efficacy of the thymidine kinase/ganciclovir system on large experimental gliomas: a nuclear magnetic resonance imaging study. Gene Ther 6, 1030–1037 (1999). https://doi.org/10.1038/sj.gt.3300921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300921

Keywords

Search

Quick links