Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Stabilized plasmid-lipid particles: construction and characterization

Abstract

A detergent dialysis procedure is described which allows encapsulation of plasmid DNA within a lipid envelope, where the resulting particle is stabilized in aqueous media by the presence of a poly(ethyleneglycol) (PEG) coating. These ‘stabilized plasmid-lipid particles’ (SPLP) exhibit an average size of 70 nm in diameter, contain one plasmid per particle and fully protect the encapsulated plasmid from digestion by serum nucleases and E. coli DNase I. Encapsulation is a sensitive function of cationic lipid content, with maximum entrapment observed at dioleoyldimethylammonium chloride (DODAC) contents of 5 to 10 mol%. The formulation process results in plasmid-trapping efficiencies of up to 70% and permits inclusion of ‘fusigenic’ lipids such as dioleoylphosphatidylethanolamine (DOPE). The in vitro transfection capabilities of SPLP are demonstrated to be strongly dependent on the length of the acyl chain contained in the ceramide group used to anchor the PEG polymer to the surface of the SPLP. Shorter acyl chain lengths result in a PEG coating which can dissociate from the SPLP surface, transforming the SPLP from a stable particle to a transfection-competent entity. It is suggested that SPLP may have utility as systemic gene delivery systems for gene therapy protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Huang L, Li S . Liposomal gene delivery: a complex package Nature Biotech 1997 15: 620–621

    Article  CAS  Google Scholar 

  2. Templeton NS et al. Improved DNA:liposome complexes for increased systemic delivery and gene expression Nature Biotech 1997 15: 647–652

    Article  CAS  Google Scholar 

  3. Hofland HJ et al. In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex Pharmaceut Res 1997 14: 742–749

    Article  CAS  Google Scholar 

  4. Thierry AR et al. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice Proc Natl Acad Sci USA 1995 92: 9742–9746

    Article  CAS  Google Scholar 

  5. Harrison GS et al. Optimization of gene transfer using cationic lipids in cell lines and primary human CD4+ and CD34+ hematopoietic cells Biotechniques 1995 19: 816–823

    CAS  PubMed  Google Scholar 

  6. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  Google Scholar 

  7. Profitt RT et al. Liposomal blockade of the reticuloendothelial system: improved tumor imaging with small unilamellar vesicles Science 1983 220: 502–505

    Article  Google Scholar 

  8. Gabizon A, Papahadjopoulos D . Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors Proc Natl Acad Sci USA 1988 85: 6949–6953

    Article  CAS  Google Scholar 

  9. Chonn A, Cullis PR . Recent advances in liposome drug delivery systems Curr Opin Biotech 1995 6: 698–708

    Article  CAS  Google Scholar 

  10. Kohn S, Nagy JA, Dvorak HF, Dvorak AM . Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels Lab Invet 1992 67: 596–607

    CAS  Google Scholar 

  11. Reimer DL et al. Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA Biochemistry 1995 34: 12877–12883

    Article  CAS  Google Scholar 

  12. Harasym TO et al. Poly(ethyleneglycol)-modified phospholipids prevent aggregation during covalent conjugation of proteins to liposomes Bioconj Chem 1995 6: 187–194

    Article  CAS  Google Scholar 

  13. Holland JW, Hui C, Cullis PR, Madden TD . Poly(ethyleneglycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine Biochemistry 1996 35: 2618–2624

    Article  CAS  Google Scholar 

  14. Xu Y, Szoka FC . Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection Biochemistry 1996 35: 5616–5623

    Article  CAS  Google Scholar 

  15. Farhood H, Serbina N, Huang L . The role of dioleoylphosphatidylethanolamine in cationic liposome mediated gene transfer Biochim Biophys Acta 1995 1235: 289–295

    Article  Google Scholar 

  16. Chonn A, Semple SC, Cullis PR . Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes J Biol Chem 1992 267: 18759–18765

    CAS  PubMed  Google Scholar 

  17. Mimms LT et al. Phospholipid vesicle formation and transmembrane protein incorporation using octylglycoside Biochemistry 1981 20: 833–840

    Article  CAS  Google Scholar 

  18. Fraley R, Subramani S, Berg P, Papahadjopoulos D . Introduction of liposome-encapsulated SV40 DNA into cells J Biol Chem 1980 255: 10431–10435

    CAS  PubMed  Google Scholar 

  19. Soriano P et al. Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene Proc Natl Acad Sci USA 1983 80: 7128–7131

    Article  CAS  Google Scholar 

  20. Nakanishi M et al. Efficient introduction of contents of liposomes into cells using HVJ (Sendai virus) Exp Cell Res 1985 159: 399–409

    Article  CAS  Google Scholar 

  21. Fraley RT, Fornari CS, Kaplan S . Entrapment of a bacterial plasmid in phospholipid vesicles: potential for gene therapy Proc Natl Acad Sci USA 1979 76: 3348–3352

    Article  CAS  Google Scholar 

  22. Nicolau C, Rottem S . Expression of a β-lactamase activity in Mycoplasma carpicolum transfected with the liposome-encapsulated E. coli pBR32 plasmid Biochem Biophys Res Commun 1982 108: 982–986

    Article  CAS  Google Scholar 

  23. Stavridis JC et al. Construction of transferrin-coated liposomes for in vivo transport of exogenous DNA to bone marrow erythroblasts in rabbits Exp Cell Res 1986 164: 568–572

    Article  CAS  Google Scholar 

  24. Wang C-Y, Huang L . pH-sensitive immunoliposomes mediate target cell-specific delivery and controlled expression of a foreign gene in mouse Proc Natl Acad Sci USA 1987 84: 7851–7855.

    Article  CAS  Google Scholar 

  25. Lurquin PF . Entrapment of plasmid DNA by liposomes and their interactions with plant protoplasts Nucleic Acids Res 1979 6: 3773–3784

    Article  CAS  Google Scholar 

  26. Alino SF et al. In vivo delivery of human alpha 1-antitrypsin gene to mouse hepatocytes by liposomes Biochem Biophys Res Commun 1993 192: 174–181

    Article  CAS  Google Scholar 

  27. Baru M, Axelrod JH, Nur I . Liposome-encapsulated DNA-mediated gene transfer and synthesis of human factor IX in mice Gene 1995 161: 143–150

    Article  CAS  Google Scholar 

  28. Jay DG, Gilbert W . Basic protein enhances the incorporation of DNA into lipid vesicles: model for the formation of primordial cells Proc Natl Acad Sci USA 1987 84: 1978–1980

    Article  CAS  Google Scholar 

  29. Puyal C, Milhaud P, Bienvenue A, Philippot JR . A new cationic liposome encapsulating genetic material. A potential delivery system for polynucleotides Eur J Biochem 1995 228: 697–703

    Article  CAS  Google Scholar 

  30. Ibanez M et al. Spermidine-condensed DNA and cone-shaped lipids improve delivery and expression of exogenous DNA transfer by liposomes Biochem Cell Biol 1997 74: 633–643

    Article  Google Scholar 

  31. Ausubel F et al (eds). Preparation and analysis of DNA. In: Short Protocols in Molecular Biology, 3rd edn John Wiley: New York, 1995, ppA1–A58

  32. King GI, Jacobs RE, White SH . Hexane dissolved in dioleoyllecithin bilayers has a partial molar volume of approximately zero Biochem J 1985 24: 4637–4645

    Article  CAS  Google Scholar 

  33. Ollivon M, Eidelman O, Blumenthal R, Walter A . Micelle-vesicle transition of egg phosphatidylcholine and octylglucoside Biochem J 1988 27: 1695–1703

    Article  CAS  Google Scholar 

  34. Vinson PK, Talmon Y, Walter A . Vesicle-micelle transition of phosphatidylcholine and octylglucoside elucidated by cryo-transmission electron microscopy Biophys J 1989 56: 669–681

    Article  CAS  Google Scholar 

  35. Cullis PR, de Kruijff B . The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin Biochim Biophys Acta 1978 513: 31–42

    Article  CAS  Google Scholar 

  36. Holland JW, Cullis PR, Madden TD . Poly(ethyleneglycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer forming lipids Biochemistry 1996 35: 2610–2617

    Article  CAS  Google Scholar 

  37. Webb MS et al. Comparison of different hydrophobic anchors conjugated to poly(ethyleneglycol): effects on the pharmacokinetics of liposomal vincristine (submitted)

  38. Birnboim HC, Doly J . A rapid alkaline extraction procedure for screening recombinant plasmid DNA Nucleic Acids Res 1979 7: 1513–1522

    Article  CAS  Google Scholar 

  39. Sambrook J, Fritsch EF, Maniatis T . Extraction and purification of plasmid DNA. In: Ford N, Nolan C, Ferguson M (eds) . Molecular Cloning, 2nd edn Cold Spring Harbor Laboratory Press: New York 1989 1.38–1.39

    Google Scholar 

  40. Hope MJ, Bally MB, Webb G, Cullis PR . Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size, trapped volume and ability to maintain a membrane potential Biochim Biophys Acta 1985 812: 55–65

    Article  CAS  Google Scholar 

  41. Cudd A, Nicolau C . Intracellular fate of liposome-encapsulated DNA in mouse liver. Analysis using electron microscope autoradiography and subcellular fractionation Biochim Biophys Acta 1985 845: 477–491

    Article  CAS  Google Scholar 

  42. Szelei J, Duda E . Entrapment of high molecular mass DNA molecules in liposomes for the genetic transformation of animal cells Biochem J 1989 259: 549–553

    Article  CAS  Google Scholar 

  43. Monnard P-A, Oberholzer T, Luisi P . Entrapment of nucleic acids in liposomes Biochim Biophy Acta 1997 1329: 39–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, J., Palmer, L., Ossanlou, M. et al. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 6, 271–281 (1999). https://doi.org/10.1038/sj.gt.3300821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300821

Keywords

This article is cited by

Search

Quick links