Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Failure of wild-type p53 gene therapy in human cancer cells expressing a mutant p53 protein

Abstract

The introduction of exogenous wild-type p53 into human cancer cells bearing p53 mutation does not necessarily result in inhibition of tumor growth. We have demonstrated this in MDA-MB468 breast cancer cells which are hemizygous for p53 mutation and also in KM12SM colorectal carcinoma cells which are heterozygous for p53 mutation. The wtp53 transfectants decreased three- to four-fold the number of colonies compared with controls. Most wtp53-expressing cells died by apoptosis at early passages, but some cells were able to form colonies and their proliferation rate was similar to control transfectants. This reversion was observed in three of the six MDA-MB-468 clones selected. When MDA-wtp53 transfectants were implanted orthotopically in nude mice only one clone showed prolonged tumor latency. No differences were found in either tumor proliferation or apoptosis in tumors. Integration and expression of exogenous wtp53 was assessed in early and late passages in vitro, and in tumors growing in vivo. Consistently, we found mutations in the exogenous wtp53 gene of MDA-MB468 transfectants. Excision of the exogenous gene was an alternative to abrogate the wtp53 function that was extremely efficient in KM12 cells, although they maintained resistance to geneticin. These results were corroborated by the functional assay in yeast. In conclusion, wtp53 is inactivated in these cancer cells by different mechanisms. The presence of mutated p53 may confer genome instability and mutator ability, which allows cells to escape the effects of the exogenous wtp53 and contributes to the failure of wtp53 gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2a
Figure 2b
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis Cancer Res 1994 54: 4855–4878

    CAS  PubMed  Google Scholar 

  2. Sidransky D, Hollstein M . Clinical implications of the p53 gene Annu Rev Med 1996 47: 285–301

    Article  CAS  PubMed  Google Scholar 

  3. Finlay CA . The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth Mol Cel Biol 1993 13: 301–306

    Article  CAS  Google Scholar 

  4. Knippschild U, Oren M, Deppert W . Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion Oncogene 1996 12: 1755–1765

    CAS  PubMed  Google Scholar 

  5. Farmer G et al. Wild-type p53 activates transcription in vitro Nature 1992 358: 83–86

    Article  CAS  PubMed  Google Scholar 

  6. Arrowsmith CH, Morin P . New insights into p53 function from structural studies Oncogene 1996 12: 1379–1385

    CAS  PubMed  Google Scholar 

  7. Buckbinder L, Talbott R, Seizinger BR, Kley N . Gene regulation by temperature-sensitive p53 mutants: identification of p53 response genes Proc Natl Acad Sci USA 1994 91: 10640–10644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Canman CE, Chen CY, Lee MH, Kastan MB . DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis Cold Spring Harbor Symposia on Quantitative Biology 1994 59: 277–286

    Article  CAS  PubMed  Google Scholar 

  9. Kastan MB, Canman CE, Leonard CJ . p53, cell cycle control and apoptosis: implications for cancer Cancer Metast Rev 1995 14: 3–15

    Article  CAS  Google Scholar 

  10. Pollock RE et al. Soft tissue sarcoma metastasis from clonal expansion of p53 mutated tumor cells Oncogene 1996 12: 2035–2039

    CAS  PubMed  Google Scholar 

  11. Symonds H et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo Cell 1994 78: 703–711

    Article  CAS  PubMed  Google Scholar 

  12. Donehower LA . Effects of p53 mutation on tumor progression: recent insights from mouse tumor models Biochim Biophys Acta – Rev Cancer 1996 1242: 171–176

    Article  Google Scholar 

  13. Ullrich SJ, Anderson CW, Mercer WE, Appella E . The p53 tumor suppressor protein, a modulator of cell proliferation J Biol Chem 1992 267: 15259–15262

    CAS  PubMed  Google Scholar 

  14. Marchetti A et al. P53 mutations and histological type of invasive breast carcinoma Cancer Res 1993 53: 4665–4669

    CAS  PubMed  Google Scholar 

  15. Casey G et al. Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene Oncogene 1991 6: 1791–1797

    CAS  PubMed  Google Scholar 

  16. Bacchetti S, Graham FL . Inhibition of cell proliferation by an adenovirus vector expression the human wild type p53 protein Int J Oncol 1993 3: 781–788

    CAS  PubMed  Google Scholar 

  17. Merlo GR et al. Growth suppression of normal mammary epithelial cells by wild-type p53. Breast Cancer: from Biology to Therapy Ann NY Acad Sci 1993 689: 108–113

    Article  Google Scholar 

  18. Merlo GR et al. Growth suppression of normal mammary epithelial cells by wild-type p53 Oncogene 1994 9: 443–453

    CAS  PubMed  Google Scholar 

  19. Cirielli C et al. Adenovirus-mediated gene transfer of wild-type p53 results in melanoma cell apoptosis in vitro and in vivo Int J Cancer 1995 63: 673–679

    Article  CAS  PubMed  Google Scholar 

  20. Wang YS et al. Reconstitution of wild-type p53 expression triggers apoptosis in a p53-negative v-myc retrovirus-induced T-cell lymphoma line Cell Growth Differ 1993 4: 467–473

    CAS  PubMed  Google Scholar 

  21. Roemer K, Friedmann T . Mechanisms of action of the p53 tumor suppressor and prospects for cancer gene therapy by reconstitution of p53 function. Gene Therapy for Neoplastic Diseases Ann NY Acad Sci 1994 716: 265–282

    Article  CAS  PubMed  Google Scholar 

  22. Shaw P et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line Proc Natl Acad Sci USA 1992 89: 4495–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu TJ et al. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck Cancer Res 1995 55: 3117–3122

    CAS  PubMed  Google Scholar 

  24. Yang CL, Cirielli C, Capogrossi MC, Passaniti A . Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells Cancer Res 1995 55: 4210–4213

    CAS  PubMed  Google Scholar 

  25. Radinsky R et al. Terminal differentiation and apoptosis in experimental lung metastases of human osteogenic sarcoma cells by wild type p53 Oncogene 1994 9: 1877–1883

    CAS  PubMed  Google Scholar 

  26. Cajot JF et al. Growth suppression mediated by transfection of p53 in Hut292DM human lung cancer cells expressing endogenous wild-type p53 protein Cancer Res 1992 52: 6956–6960

    CAS  PubMed  Google Scholar 

  27. Noble JR et al. Effects of exogenous wild-type-p53 on a human lung carcinoma cell line with endogenous wild-type-p53 Exp Cell Res 1992 203: 297–304

    Article  CAS  PubMed  Google Scholar 

  28. Chen YM et al. Expression of wild-type p53 in human A673 cells suppresses tumorigenicity but not growth rate Oncogene 1991 6: 1799–1805

    CAS  PubMed  Google Scholar 

  29. Brenner L et al. Wild-type p53 tumor suppressor gene restores differentiation of human squamous carcinoma cells but not the response to transforming growth factor-beta Cell Growth Differ 1993 4: 993–1004

    CAS  PubMed  Google Scholar 

  30. Soddu S et al. Wild-type p53 gene expression induces granulocytic differentiation of HL-60 cells Blood 1994 83: 2230–2237

    CAS  PubMed  Google Scholar 

  31. Lee JM, Bernstein A . Apoptosis, cancer and the p53 tumour suppressor gene Cancer Metastas Rev 1995 14: 149–161

    Article  CAS  Google Scholar 

  32. Vojtesek B, Lane DP . Regulation of p53 protein expression in human breast cancer cell lines J Cell Sci 1993 105: 607–612

    CAS  PubMed  Google Scholar 

  33. Callahan R . p53 Mutations, another breast cancer prognostic factor J Natl Cancer Inst 1992 84: 826–827

    Article  CAS  PubMed  Google Scholar 

  34. Lane DP . p53 and human cancers Br Med Bull J 1994 50: 582–599

    Article  CAS  Google Scholar 

  35. Tlsty TD et al. Genomic integrity and the genetics of cancer Cold Spring Harbor Symposia on Quantitative Biology 1994 59: 265–275

    Article  CAS  PubMed  Google Scholar 

  36. Coleman WB, Tsongalis GJ . Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation Clin Chem 1995 41: 644–657

    CAS  PubMed  Google Scholar 

  37. Pietenpol JA et al. Mammalian cells resistant to tumor suppressor genes Proc Natl Acad Sci USA 1996 93: 8390–8394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kyo E et al. Reduced tumorigenicity and cell motility of a gastric carcinoma cell line by introduction of wild-type p53 gene Int J Oncol 1993 3: 265–271

    CAS  PubMed  Google Scholar 

  39. Roth JA et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer Nature Med 1996 2: 985–991

    Article  CAS  PubMed  Google Scholar 

  40. Harris CC . Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies J Natl Cancer Inst 1996 88: 1442–1455

    Article  CAS  PubMed  Google Scholar 

  41. Wigler M et al. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells Cell 1977 16: 777–785

    Article  Google Scholar 

  42. Schmidt-Kastner PK, Jardine K, Cormier M, McBurney MW . Genes transfected into embryonal carcinoma stem cells are both lost and inactivated at high frequency Somat Cell Mole Genet 1996 22: 383–392

    Article  CAS  Google Scholar 

  43. Carder PJ et al. Mutation of the p53 gene precedes aneuploid clonal divergence in colorectal carcinoma Br J Cancer 1995 71: 215–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Usmani BA, Lunec J, Sherbet GV . DNA repair and repair fidelity in metastatic variants of the B16 murine melanoma J Cell Biochem 1993 51: 336–344

    Article  CAS  PubMed  Google Scholar 

  45. Valgardsdottir R et al. Genomic instability and poor prognosis associated with abnormal TP53 in breast carcinomas. Molecular and immunohistochemical analysis APMIS 1997 105: 121–130

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W, Shay JW, Deisseroth A . Inactive p53 mutants may enhance the transcriptional activity of wild-type p53 Cancer Res 1993 53: 4772–4775

    CAS  PubMed  Google Scholar 

  47. Milner J, Metcalf EA . Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation Cell 1991 65: 765–774

    Article  CAS  PubMed  Google Scholar 

  48. Levine AJ . 11th Klenk, Ernst Lecture – the p53 tumor suppressor gene and product Biological Chemistry Hoppe–Seyler 1993 374: 227–235

    Article  CAS  PubMed  Google Scholar 

  49. Kern SE et al. Oncogenic forms of p53 inhibit p53-regulated gene expression Science 1992 256: 827–830

    Article  CAS  PubMed  Google Scholar 

  50. Kimura M et al. Inability to induce the alteration of tumorigenicity and chemosensitivity of p53-null human pancreatic carcinoma cells after the transduction of wild-type p53 gene Anticancer Res 1997 17: 879–884

    CAS  PubMed  Google Scholar 

  51. Peinado MA, Malkhosyan S, Velazquez A, Perucho M . Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction Proc Natl Acad Sci USA 1992 89: 10065–10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hartwell L, Weinert T, Kadyk L, Garvik B . Cell cycle checkpoints, genomic integrity, and cancer Cold Spring Harbor Symposia on Quantitative Biology 1994 59: 259–263

    Article  CAS  PubMed  Google Scholar 

  53. Bertrand P et al. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein Oncogene 1997 14: 1117–1122

    Article  CAS  PubMed  Google Scholar 

  54. Lesoon-Wood LA et al. Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice Hum Gene Ther 1995 6: 395–405

    Article  CAS  PubMed  Google Scholar 

  55. Flaman JM et al. A simple p53 functional assay for screening cell lines, blood, and tumors Proc Natl Acad Sci USA 1995 92: 3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skenan P et al. New colorimetric cytotoxicity assay for anticancer-drug screening J Natl Cancer Inst 1990 82: 1107–1112

    Article  Google Scholar 

  57. Bonfil RD et al. Stimulation of angiogenesis as an explanation of matrigel-enhanced tumorigenicity Int J Cancer 1994 58: 233–239

    Article  CAS  PubMed  Google Scholar 

  58. Mollinedo F, Martinez-Dalmau R, Modolell M . Early and selective induction of apoptosis in human leukemic cells by the alkyl-lysophospholipid ET-18-OCH3 Biochem Biophys Res Commun 1993 192: 603–609

    Article  CAS  PubMed  Google Scholar 

  59. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation J Cell Biol 1992 119: 493–501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinyals, A., Peinado, M., Gonzalez-Garrigues, M. et al. Failure of wild-type p53 gene therapy in human cancer cells expressing a mutant p53 protein. Gene Ther 6, 22–33 (1999). https://doi.org/10.1038/sj.gt.3300786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3300786

Keywords

This article is cited by

Search

Quick links