Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface

Abstract

The manner in which a membrane protein is anchored to the lipid bilayer may have a profound influence on its function. Most cell surface membrane proteins are anchored by a membrane-spanning segment(s) of the polypeptide chain, but another type of anchor has been described for several proteins: a phosphatidyl inositol glycan moiety, attached to the protein C terminus1,2. This type of linkage has been identified on membrane proteins involved in adhesion3 and transmembrane signalling4,5 and could be important in the execution of these functions. We report here that an immunologically important adhesion glycoprotein, lymphocyte function-associated antigen 3 (LFA-3), can be anchored to the membrane by both types of mechanism. These two distinct cell-surface forms of LFA-3 are derived from different biosynthetic precursors. The existence of a phosphatidyl-inositol-linked and a transmembrane anchored form of LFA-3 has important implications for adhesion and transmembrane signalling by LFA-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Low, M. G. Biochem. J. 244, 1–13 (1987).

    Article  CAS  Google Scholar 

  2. Cross, G. A. M. Cell 48, 179–181 (1987).

    Article  CAS  Google Scholar 

  3. He, H. T., Barbet, J., Chaix, J. C. & Goridis, C. EMBO J. 5, 2489–2494 (1986).

    Article  CAS  Google Scholar 

  4. Kroczek, R. A., Gunter, K. C., Germain, R. N. & Shevach, E. M. Nature 322, 181–184 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Reiser, H. et al. Cell 47, 365–370 (1986).

    Article  CAS  Google Scholar 

  6. Springer, T. A., Dustin, M. L., Kishimoto, T. K. & Marlin, S. D. A Rev. Immun. 5, 223–252 (1987).

    Article  CAS  Google Scholar 

  7. Vollger, L. W., Tuck, D. T., Springer, T. A., Haynes, B. F. & Singer, K. H. J. Immun. 138, 358–363 (1987).

    CAS  PubMed  Google Scholar 

  8. Plunkett, M. L., Sanders, M. E., Selvaraj, P., Dustin, M. L. & Springer, T. A. J. exp. Med. 165, 664–676 (1987).

    Article  CAS  Google Scholar 

  9. Makgoba, M. W., Shaw, S., Gugel, E. A. & Sanders, M. E. J. Immun. 138, 3587–3589 (1987).

    CAS  PubMed  Google Scholar 

  10. Selvaraj, P. et al. Nature 326, 400–403 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Dustin, M. L., Sanders, M. E., Shaw, S. & Springer, T. A. J. exp. Med. 165, 677–692 (1987).

    Article  CAS  Google Scholar 

  12. Hunig, T., Tiefenthaler, G., Meyer zum Buschenfelde, K.-H. & Meuer, S. C. Nature 326, 298–301 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Bierer, B. E. et al. Fedn Proc. 46, 1498 (abstr. 6894) (1987).

    Google Scholar 

  14. Selvaraj, P., Dustin, M. L., Silber, R., Low, M. G. & Springer, T. A. J. exp. Med. 166, 1011–1025 (1987).

    Article  CAS  Google Scholar 

  15. Davitz, M. A., Low, M. G. & Nussenzweig, V. J. exp. Med. 163, 1150–1161 (1986).

    Article  CAS  Google Scholar 

  16. Kornfeld, R. & Kornfeld, S. A. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  Google Scholar 

  17. Wallner, B. P. et al. J. exp. Med. 166, 923–932 (1987).

    Article  CAS  Google Scholar 

  18. Braell, W. A. & Lodish, H. F. J. biol. Chem. 256, 11337–11344 (1981).

    CAS  PubMed  Google Scholar 

  19. Barthels, D. et al. EMBO J. 6, 907–914 (1987).

    Article  CAS  Google Scholar 

  20. Le, P., Denning, S., Springer, T., Haynes, B. & Singer, K. Fedn Proc. 46, 447 (1987).

    Google Scholar 

  21. Ishihara, A., Hou, Y. & Jacobson, K. Proc. natn. Acad. Sei. U.S.A. 84, 1290–1293 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Singer, S. J. In Surface membrane receptors. Interface between cells and their environment, (eds Bradshaw, R. A., Frazier, W. A., Merrell, R. C. & Gottlieb, D. I.) 1–24 (Plenum, New York 1976).

    Book  Google Scholar 

  23. Sastre, L., Kishimoto, T. K., Gee, C., Roberts, T. & Springer, T. A. J. Immun. 137, 1060–1065 (1986).

    CAS  PubMed  Google Scholar 

  24. Gielkens, A. L. J., Van Zaane, D., Bloemers, H. P. J. & Bloemendal, H. Proc. natn. Acad. Sci. U.S.A. 73, 356–360 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Kürzinger, K. & Springer, T. A. J. biol. Chem. 257, 12412–12418 (1982).

    PubMed  Google Scholar 

  26. Hoessli, D. & Rungger-Brandle, E. Expl cell Res. 156, 239–250 (1985).

    Article  CAS  Google Scholar 

  27. Lublin, D. M., Krsek-Staples, J., Pangburn, M. K. & Atkinson, J. P. J. Immun. 137, 1629–1635 (1986).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dustin, M., Selvaraj, P., Mattaliano, R. et al. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature 329, 846–848 (1987). https://doi.org/10.1038/329846a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329846a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing