Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Different H–2 subregions influence immunization against retrovirus and immunosuppression

Abstract

Friend murine leukaemia virus complex (FV) causes an immunosuppressive retrovirus-induced disease. In certain mouse strains, FV shows striking similarities to human immunodeficiency virus (HIV) infection in man in that infected mice have severe T-cell immunosuppression but also develop virus-neutralizing antibodies incapable of eliminating infected cells. Previously we noted the influence of mouse major histocompatibility complex (H–2) genes on both FV-induced immunosuppression1 and on ability to protect mice against FV by immunizing with a vaccinia–Friend murine leukaemia helper virus (F-MuLV) envelope (env) recombinant virus2. Here we show that different subregions of H–2 are involved in susceptibility to virus-induced immunosuppression (H–2D subregion) and protective immunization with a recombinant vaccinia virus (H–2K or I–A subregions). Thus, susceptibility to virus-induced immunosuppression does not preclude protection by vaccinia–Friend immunization. The mechanism of protection seems to involve priming of immune T cells, and not initial induction of neutralizing antibodies or cytotoxic T lymphocytes (CTL) (ref. 2). Subsequent virus challenge generates a secondary response, resulting in appearance of IgG antibodies and CTL. In human HIV infection there could also be host genetic influences on elements of disease pathogenesis, such as immunosuppression, and on the success of T-cell priming by potential protective vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Morrison, R. P., Nishio, J. & Chesebro, B. J. exp. Med. 163, 301–314 (1986).

    Article  CAS  Google Scholar 

  2. Earl, P. L. et al. Science 234, 728–731 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Teich, N., Wyke, J., Mak, T., Bernstein, A. & Hardy, W. in RNA Tumor Viruses, Molecular Biology of Tumor Viruses (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 785–998 (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  4. Chesebro, B. & Wehrly, K. J. exp. Med. 143, 73–84 (1976).

    Article  CAS  Google Scholar 

  5. Chesebro, B., Bloom, M., Wehrly, K. & Nishio, J. J. Virol. 32, 832–837 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Doig, D. & Chesebro, B. J. exp. Med. 150, 10–19 (1979).

    Article  CAS  Google Scholar 

  7. Chesebro, B. & Wehrly, K. Proc. natn. Acad. Sci. U.S.A. 76, 425–429 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Doig, D. & Chesebro, B. J. exp. Med. 148, 1109–1121 (1978).

    Article  CAS  Google Scholar 

  9. Chesebro, B., Wehrly, K., Doig, D. & Nishio, J. Proc. natn. Acad. Sci. U.S.A. 76, 5784–5788 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Weiss, R. A. et al. Nature 316, 69–72 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Robert-Guroff, M., Brown, M. & Gallo, R. C. Nature 316, 72–74 (1985).

    Article  ADS  CAS  Google Scholar 

  12. McDougal, J. S. et al. J. Immunol. Meth. 76, 171–183 (1985).

    Article  CAS  Google Scholar 

  13. Essex, M. et al. Science 220, 859–862 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Lane, H. C. & Fauci, A. S. A. Rev. Immun. 3, 477–500 (1985).

    Article  CAS  Google Scholar 

  15. Rook, A. H. et al. J. Immun. 138, 1064–1067 (1987).

    CAS  PubMed  Google Scholar 

  16. Cremer, K. J., Mackett, M., Wohlenberg, C., Notkins, A. L. & Moss, B. Science 228, 737–740 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Green, I., Paul, W. E. & Benacerraf, B. J. J. exp. Med. 123, 859–879 (1966).

    Article  CAS  Google Scholar 

  18. McDevitt, H. O. J. Immun. 100, 485–492 (1968).

    CAS  Google Scholar 

  19. Chesebro, B., Wehrly, K. & Stimpfling, J. J. exp. Med. 140, 1457–1467 (1974).

    Article  CAS  Google Scholar 

  20. Britt, W. J. & Chesebro, B. J. exp. Med. 157, 1736–1745 (1983).

    Article  CAS  Google Scholar 

  21. Smith, G. L., Murphy, B. R. & Moss, B. Proc. natn. Acad. Sci. U.S.A. 80, 7155–7159 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Chesebro, B., Britt, W., Evans, L., Wehrly, K., Nishio, J. & Cloyd, M. Virology 127, 134–148 (1983).

    Article  CAS  Google Scholar 

  23. Wolfe, J. H., Blank, K. J. & Pincus, T. Immunogenetics 12, 187–190 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, R., Earl, P., Nishio, J. et al. Different H–2 subregions influence immunization against retrovirus and immunosuppression. Nature 329, 729–732 (1987). https://doi.org/10.1038/329729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329729a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing