Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two forms of transforming growth factor-β distinguished by multipotential haematopoietic progenitor cells

Abstract

Type-β transforming growth factors (TGF-βs) are polypeptides that act hormonally to control proliferation and differentiation of many cell types1,2. Two distinct homodimeric TGF-β polypeptides, TGF-β1 and TGF-β2 have been identified which show ˜70% amino-acid sequence similarity3,4. Despite their structural differences, TGF-β1 and TGF-β2 are equally potent at inhibiting epithelial cell proliferation and adipogenic differentiation3. The recent immunohistochemical localization of high levels of TGF-β in the bone marrow and haematopoietic progenitors of the fetal liver5 has raised the possibility that TGF-βs might be involved in the regulation of haematopoiesis. Here we show that TGF-β1, but not TGF-β2, is a potent inhibitor of haematopoietic progenitor cell proliferation. TGF-β1 inhibited colony formation by murine factor-dependent haematopoietic progenitor cells in response to interleukin-3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF), as well as colony formation by marrow progenitor cells responding to CSF-1 (M-CSF). The progenitor cell lines examined were ˜100-fold more sensitive to TGF-β1 than TGF-β2, and displayed type-I TGF-β receptors with affinity ˜20-fold higher for TGF-β1 than TGF-β2. These results identify TGF-β1 as a novel regulator of haematopoiesis that acts through type-I TGF-β receptors to modulate proliferation of progenitor cells in response to haematopoietic growth factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sporn, M. B., Roberts, A. B., Wakefield, L. M. & Assoian, R. K. Science 233, 532–534 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Massagué, J. Cell 49, 437–438 (1987).

    Article  Google Scholar 

  3. Cheifetz, S. et al. Cell 48, 409–415 (1987).

    Article  CAS  Google Scholar 

  4. Seyedin, S. M. et al. J. biol. Chem. 262, 1946–1949 (1987).

    CAS  PubMed  Google Scholar 

  5. Ellingsworth, L. R. et al. J. biol. Chem. 261, 12362–12367 (1986).

    CAS  PubMed  Google Scholar 

  6. Ihle, J. N. et al. J. Immun. 131, 282–287 (1983).

    CAS  Google Scholar 

  7. Greenberger, J. S., Sakakeeny, M. A., Humphries, R. K., Eaves, C. J. & Eckner, R. J. Proc. natn. Acad. Sci. U.S.A 80, 2931–2935 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Greenberger, J. S. et al. Fedn Proc. 42, 2762–2771 (1983).

    CAS  Google Scholar 

  9. Valtiere, M. et al. J. Immun. (in the press).

  10. Metcalf, D. Blood 67, 257–267 (1986).

    CAS  PubMed  Google Scholar 

  11. Stanley, E. R. & Heard, P. M. J. biol. Chem. 252, 4305–4312 (1977).

    CAS  Google Scholar 

  12. Greenberger, J. S. Nature 275, 752–754 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Massagué, J. Meth. Enzym. 146, 174–195 (1987).

    Article  Google Scholar 

  14. Cheifetz, S., Like, B. & Massagué, J. J. biol. Chem. 261, 9972–9978 (1986).

    CAS  PubMed  Google Scholar 

  15. Massagué, J. J. biol. Chem. 260, 7059–7066 (1985).

    PubMed  Google Scholar 

  16. Scatchard, G. Ann. N.Y. Acad. Sci 51, 660–672 (1949).

    Article  ADS  CAS  Google Scholar 

  17. Sporn, M. B. & Roberts, A. B. Nature 313, 745–747 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Schrader, J. W. & Crapper, R. M. Proc. natn. Acad. Sci. U.S.A. 80, 6892–6896 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Lang, R. A., Metcalf, D., Gough, N. M., Dunn, A. R. & Gonda, T. J. Cell 43, 531–542 (1985).

    Article  CAS  Google Scholar 

  20. Hapel, A. J., Lee, J. C., Farrar, W. L. & Ihle, J. N. Cell 25, 179–186 (1981).

    Article  CAS  Google Scholar 

  21. Metcalf, D. The Haemopoietic Colony Stimulating Factors 229–275 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  22. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. & Sporn, M. B. J. biol. Chem. 258, 7155–7160 (1983).

    CAS  Google Scholar 

  23. Massagué, J. & Like, B. J. biol. Chem. 260, 2636–2645 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, M., Greenberger, J., Anklesaria, P. et al. Two forms of transforming growth factor-β distinguished by multipotential haematopoietic progenitor cells. Nature 329, 539–541 (1987). https://doi.org/10.1038/329539a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329539a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing