Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Catalytic C–H bond activation on silicon dioxide overlayers

Abstract

The catalytic activation of hydrocarbon C–H bonds is a fundamental process in heterogeneous catalysis. Although C–H bonds are readily activated on certain metal surfaces, the nature of the catalytic sites is still not understood. Catalytic C–H bond activation with group VIII transition metals1–7 is commonly studied by hydrogen/deuterium (H/D) exchange reactions of saturated hydrocarbons with D2. These reactions have shown that the inter-conversion of II-allyl intermediates is the most facile process leading to polydeuteration on platinum and rhodium2–5. Planar surfaces are the most active for C–H activation4,5. Carbonaceous surface species on platinum6, palladium,7 and rhodium5 are not part of the active site nor do they interfere with hydrogenation or C–H activation reactions. Unfortunately, none of these numerous studies could reveal the nature of the active site or the mechanism of the initial C–H activation step. Here we present evidence that the surface of inert silica becomes catalytically active in the presence of a transition metal underlayer. The similar selectivity observed on such drastically different surfaces as silica and platinum indicates that the existence of a surface is more important than its chemical nature. These results provide new insight into the nature of C–H activation and lead the way to a novel class of well-defined catalysts based on transition metal underlayers. Our data suggest that the major action of transition metals in heterogeneous C–H activation catalysis is the activation of hydrogen and that the activated hydrogen represents the catalytically active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, J. R. & Kemball, C. Proc. R. Soc. 223, 361–377 (1954).

    ADS  CAS  Google Scholar 

  2. Rooney, J. J. J. Catal. 2, 53–57 (1963).

    Article  CAS  Google Scholar 

  3. Clarke, J. K. A. & Rooney, J. J. Adv. Catal 25, 125–183 (1976).

    CAS  Google Scholar 

  4. Lebrilla, C. B. & Maier, W. F. J. Am. chem. Soc. 108, 1606–1616 (1986).

    Article  CAS  Google Scholar 

  5. Cogen, J. M. & Maier, W. F. J. Am. chem. Soc. 108, 7752–7762 (1986).

    Article  CAS  Google Scholar 

  6. Inoue, Y. et al. J. Catal. 53, 401–413 (1978).

    Article  CAS  Google Scholar 

  7. Beebe, T. B. Jr & Yates, J. T. Jr J. Am. chem. Soc. 108, 663–671 (1986).

    Article  CAS  Google Scholar 

  8. Conner, W. C. Jr, Pajonk, G. M. & Teichner, S. J. Adv. Catal. 34, 1–79 (1986).

    CAS  Google Scholar 

  9. Auwärter, M. New Synth. Meth. 3, 43–58 (1975).

    Google Scholar 

  10. Heiland, W. & Taglauer, E. Meth. exp. Phys. 22, 299–348 (1985).

    Article  CAS  Google Scholar 

  11. Evans, C. A. Jr & Blattner, R. J. A. Rev. Mater. Sci. 8, 181–212 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Chu, W. K., Mayer, J. W. & Nicolet, M. A. Backscatlering Spectrometry (Academic, New York, 1978).

    Google Scholar 

  13. Anderson, J. R. & Kemball, C. Proc. R. Soc. A226, 472–489 (1954).

    ADS  CAS  Google Scholar 

  14. Burwell, R. L. Jr, Shim, B. K. & Rowlinson, H. C. J. Am. chem. Soc. 79, 5142–5148 (1957).

    Article  CAS  Google Scholar 

  15. Burwell, R. L. Jr Accts chem. Res. 2, 289–296 (1969).

    Article  CAS  Google Scholar 

  16. Langmuir, I. J. Am. chem. Soc. 34, 1310–1325 (1912).

    Article  CAS  Google Scholar 

  17. Sachtler, J. W. A., Van Hove, M. A., Biberan, J. P. & Somorjai, G. A. Phys. Rev. Let. 45, 1601 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Izumi, Y. Adv. Catal. 32, 215–271 (1983).

    CAS  Google Scholar 

  19. Wood, B. J. & Wise, H. J. Catal. 5, 135–145 (1966).

    Article  CAS  Google Scholar 

  20. Yolles, R. S., Wood, B. J. & Wise, H. J. Catal 21, 66–69 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, A., Maier, W., Fleming, R. et al. Catalytic C–H bond activation on silicon dioxide overlayers. Nature 329, 531–534 (1987). https://doi.org/10.1038/329531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329531a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing