Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity

Abstract

Site-specific recombination reactions involve the joining or rearrangement of discrete DNA segments in a highly precise manner. A site-specific DNA inversion regulates the expression of flagellin genes in Salmonella by switching the orientation of a promoter1,2. Analysis of the reaction has shown that, in addition to DNA sequences at the two boundaries of the 1-kilobase invertible segment where strand exchange occurs, another cis acting sequence is required for efficient inversion3. This 60-base-pair enhancer-like sequence can function at many different locations and in either orientation in a plasmid substrate. It includes two binding sites for a host protein called Factor II or Fis (refs 4 and 5). Here we have investigated the importance of the spatial relationship between the two Fis binding sites for enhancer activity and have found that the correct helical positioning of the binding sites on the DNA is critical. However, this result could not be accounted for by effects on Fis binding. We propose a model for enhancer function in which the enhancer region acts to align the recombination sites into a specific conformation required for productive synapsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zieg, J., Silverman, M. & Hilman, M. Science 196, 170–172 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Silverman, M. & Simon, M. Cell 19, 845–854 (1980).

    Article  CAS  Google Scholar 

  3. Johnson, R. C. & Simon, M. I. Cell 41, 781–789 (1985).

    Article  CAS  Google Scholar 

  4. Johnson, R. C., Bruist, M. F. & Simon, M. I. Cell 46, 531–539 (1986).

    Article  CAS  Google Scholar 

  5. Koch, C. & Kahmann, R. J. biol. Chem. 261, 15673–15678 (1986).

    CAS  PubMed  Google Scholar 

  6. Kamp, D., Kahmann, R., Zipser, D., Broker, T. R. & Chow, L. T. Nature 271, 577–580 (1978).

    Article  ADS  CAS  Google Scholar 

  7. van de Putte, P., Cramer, S. & Giphart, M. Nature 286, 218–222 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Iida, S., Meyer, J., Kennedy, K. & Arber, W. EMBO J. 1, 1445–1453 (1982).

    Article  CAS  Google Scholar 

  9. Plasterk, R. H. A. & van de Putte, P. EMBO J. 4, 237–242 (1985).

    Article  CAS  Google Scholar 

  10. Dunn, T., Hahn, S., Ogden, S. & Schlief, R. Proc. natn. Acad. Sci. U.S.A. 81, 5017–5020 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Hochschild, A. H. & Ptashne, M. Cell 44, 681–687 (1986).

    Article  CAS  Google Scholar 

  12. Takahashi, K. et al. Nature 319, 121–126 (1985).

    Article  ADS  Google Scholar 

  13. Wu, H. M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Zinkel, S. S. & Crothers, D. M. Nature 328, 178–181 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Grindley, N. D. F. et al. Cell 30, 19–27 (1982).

    Article  CAS  Google Scholar 

  16. Boocock, M. R., Brown, J. L. & Sherratt, D. J. in DNA Replication and Recombination (eds Kelley, T. J. & McMacken, R.) 703–718 (Liss, New York, 1986).

    Google Scholar 

  17. Gellert, M. & Nash, H. Nature 325, 401–404 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Echols, H. Science 233, 1050–1056 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Jorgensen, R. A., Rothstein, S. J. & Reznikoff, W. S. Molec. gen. Genet. 177, 65–72 (1979).

    Article  CAS  Google Scholar 

  20. Chen, E. Y. & Seeburg, P. H. DNA 4, 165–170 (1985).

    Article  CAS  Google Scholar 

  21. Bruist, M. F. & Simon, M. I. J. bact. 159, 71–79 (1984).

    CAS  PubMed  Google Scholar 

  22. Garner, M. M. & Revzin, A. Nucleic Acids Res. 9, 3047–3060 (1981).

    Article  CAS  Google Scholar 

  23. Fried, M. G. & Crothers, D. M. Nucleic Acids Res. 9, 6505–6525 (1981).

    Article  CAS  Google Scholar 

  24. Bruist, M. F., Glasgow, A. C., Johnson, R. C. & Simon, M. I. Genes Dev. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R., Glasgow, A. & Simon, M. Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity. Nature 329, 462–465 (1987). https://doi.org/10.1038/329462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329462a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing